Фаза колебаний

Материал из Википедии — свободной энциклопедии
Перейти к: навигация, поиск
Графики двух периодических функций (колебаний) одинаковой частоты задержаны (сдвинуты) один относительно другого. Задержка во времени эквивалентна соответствующей разности фаз.

Фа́за колеба́ний полная — аргумент периодической функции, описывающей колебательный или волновой процесс.

Фаза колебаний начальная — значение фазы колебаний (полной) в начальный момент времени, т.е. при t = 0 (для колебательного процесса), а также в начальный момент времени в начале системы координат, т.е. при t = 0 в точке (x, y, z) = 0 (для волнового процесса).

Фаза колебания (в электротехнике) — аргумент синусоидальной функции (напряжения, тока), отсчитываемый от точки перехода значения через нуль к положительному значению.[1]

Как правило, о фазе говорят применительно к гармоническим колебаниям или монохроматическим волнам. При описании величины, испытывающей гармонические колебания, используется, например, одно из выражений:

A \cos(\omega t + \varphi _0),
A\sin(\omega t + \varphi _0),
A e^{i(\omega t + \varphi _0)}.

Аналогично, при описании волны, распространяющейся в одномерном пространстве, например, используютс выражения вида:

A \cos(k x - \omega t + \varphi _0),
A \sin(k x - \omega t + \varphi _0),
A e^{i(k x - \omega t + \varphi _0)},

для волны в пространстве любой размерности (например, в трехмерном пространстве):

A \cos(\mathbf k\cdot \mathbf r - \omega t + \varphi _0),
A \sin(\mathbf k\cdot \mathbf r - \omega t + \varphi _0),
A e^{i(\mathbf k\cdot \mathbf r - \omega t + \varphi _0)}.

Фаза колебаний (полная) в этих выражениях — аргумент функции, т.е. выражение, записанное в скобках; фаза колебаний начальная — величина φ0, являющаяся одним из слагаемых полной фазы. Говоря о полной фазе, слово полная часто опускают.

Поскольку функции sin(…) и cos(…)совпадают друг с другом при сдвиге аргумента (то есть фазы) на \pi/2, то во избежание путаницы лучше пользоваться для определения фазы только одной из этих двух функций, а не той и другой одновременно. По обычному соглашению фазой считают аргумент косинуса, а не синуса.[2][3]

То есть, для колебательного процесса (см. выше) фаза (полная)

\varphi = \omega t + \varphi _0,

для волны в одномерном пространстве

\varphi = k x - \omega t + \varphi _0,

для волны в трехмерном пространстве или пространстве любой другой размерности:

\varphi = \mathbf k\mathbf r - \omega t + \varphi _0,

где \omegaугловая частота (величина, показывающая, на сколько радиан или градусов изменится фаза за 1 с; чем величина выше, тем быстрее растет фаза с течением времени); tвремя; \varphi _0 — начальная фаза (то есть фаза при t = 0); kволновое число; x — координата точки наблюдения волнового процесса в одномерном пространстве; kволновой вектор; rрадиус-вектор точки в пространстве (набор координат, например, декартовых).

В приведенных выше выражениях фаза имеет размерность угловых единиц (радианы, градусы). Фазу колебательного процесса по аналогии с механическим вращательным также выражают в циклах, то есть долях периода повторяющегося процесса:

1 цикл = 2\pi радиан = 360 градусов.

В аналитических выражениях (в формулах) преимущественно (и по умолчанию) используется представление фазы в радианах, представление в градусах также встречается достаточно часто (по-видимому, как предельно явное и не приводящее к путанице, поскольку знак градуса не принято никогда опускать ни в устной речи, ни в записях). Указание фазы в циклах или периодах (за исключением словесных формулировок) в технике сравнительно редко.

Иногда (в квазиклассическом приближении, где используются квазимонохроматические волны, т.е. близкие к монохроматическим, но не строго монохроматические) а также в формализме интеграла по траекториям, где волны могут быть и далекими от монохроматических, хотя всё же подобны монохроматическим) рассматривается фаза, являющаяся нелинейной функцией времени t и пространственных координат r, в принципе — произвольная функция[4]:

\varphi = \varphi(\mathbf r, t).

Связанные термины[править | править вики-текст]

Рассматривая два колебательных процесса одинаковой частоты, говорят о постоянной разности полных фаз (о сдвиге фаз) этих процессов. В общем случае сдвиг фаз может меняться во времени, например, из-за угловой модуляции одного или обоих процессов.

Если два колебательных процесса происходят одновременно (например, колеблющиеся величины достигают максимума в один и тот же момент времени), то говорят, что они находятся в фазе (колебания синфазны). Если моменты максимума одного колебания совпадают с моментами минимума другого колебания, то говорят, что колебания находятся в противофазе (колебания противофазны). Если разность фаз составляет ±90°, то говорят, что колебания находятся в квадратуре или что одно из этих колебаний — квадратурное по отношению к другому колебанию (опорному, "синфазному", т.е. служащему для условного определения начальной фазы).

Если амплитуды двух противофазных монохроматических колебательных процессов одинаковы, то при сложении таких колебаний (при их интерференции) в линейной среде происходит взаимное уничтожение колебательных процессов.

Действие[править | править вики-текст]

Одна из наиболее фундаментальных физических величин, на которой построено современное описание практически любой достаточно фундаментальной физической системы[5] — действие — по своему смыслу является фазой.

Примечания[править | править вики-текст]

  1. ГОСТ Р 52002-2003. Электротехника. Термины и определения основных понятий. ГОСТ даёт определение: «Фаза (синусоидального электрического) тока — аргумент синусоидального электрического тока, отсчитываемый от точки перехода значения тока через нуль к положительному значению»
  2. Хотя нет принципиальной причины не сделать противоположный выбор, что иногда и делается некоторыми авторами.
  3. Таким образом, обычно, в соответствии с этим соглашением начальная фаза колебания вида A \sin(\omega t) считается равной -\pi/2 (синус отстает от косинуса по фазе).
  4. Хотя в части случаев с наложением условий на скорость изменения и т.п., несколько ограничивающих произвольность функции.
  5. Существуют системы, формализм действия к которым применять неудобно и даже такие, к которым он по сути неприменим, однако в современном понимании такие системы делятся на два класса: 1) не фундаментальные (то есть описываемые неточно, и мыслится, что будучи описана более точно такая система может быть — в принципе — описана через действие), 2) относящиеся к далеко не общепризнанным теоретическим построениям.