Фазовое пространство

Материал из Википедии — свободной энциклопедии
Перейти к: навигация, поиск
Двумерное фазовое пространство динамической системы (её развитие имеет вид расходящейся спирали)

Фазовое пространство в математике и физике — пространство, на котором множество всех состояний системы представлено так, что каждому возможному состоянию системы соответствует одна и только одна точка этого пространства, — которая носит название «изображающей» или «представляющей» точки, — и, наоборот, каждой точке этого пространства соответствует одно и только одно состояние системы. Таким образом, изменению состояний системы, — т.е. её динамике — можно соподчинить движение изображающей точки; траекторию этой точки называют фазовой траекторией (её не следует смешивать с действительной траекторией движения), а скорость такой изображающей точки называют фазовой скоростью.[A: 1][1]

Концепция фазового пространства была разработана в конце 19 века Людвигом Больцманом, Анри Пуанкаре и Уиллардом Гиббсом.[A: 2]

Общие положения[править | править вики-текст]

Как правило, выбирают пространства с евклидовой метрикой, используя либо декартову, либо полярную систему координат.

Для систем с одной степенью свободы фазовое пространство вырождается в фазовую плоскость.

Фазовые траектории[править | править вики-текст]

При помощи уравнений траектории в фазовом пространстве (фазовой плоскости) для исследуемой системы строят интегральные кривые, — т.е. кривые в фазовом пространстве такие, что в каждой их точке касательная имеет наклон, задаваемый уравнением траектории. Геометрическое построение интегральных кривых называют «качественным интегрированием уравнений».[2]

Понятия «интегральная кривая» и «фазовая траектория» в общем случае следует различать, «так как может случиться, что одна интегральная кривая состоит не из одной, а сразу из нескольких фазовых траекторий».[3]

Картину кривых в фазовом пространстве (на фазовой плоскости) можно описать:

  • либо одним уравнением — в координатной форме, т.е. при помощи уравнений, которые не содержат времени, — и изучать с его помощью интегральные кривые,
  • либо описывать системой уравнений в параметрической форме, — где независимая переменная , время, выполняет роль параметра — и изучать фазовые траектории.[4]

Необходимость различения этих двух способов изображения одного и того же семейства кривыхruen можно продемонстрировать на примере простейшей консервативной системы, описываемой уравнением : в этом случае для особой точки условия теоремы Коши окажутся нарушенными при рассмотрении координатного уравнения, но будут выполнены для уравнения, записанного в параметрической форме.[4]

Целой фазовой траекторией называют ту кривую в фазовом пространстве, которую описывает изображающая точка за всё время своего движения (от до ).[3]

Фазовый портрет[править | править вики-текст]

Фазовый портрет исследуемой системы — это совокупность фазовых траекторий для всевозможных начальных условий.[3] Его можно рассматривать как интегральное многообразиеruen.[A: 3]

Поскольку при изучении поведения системы интересуются прежде всего стационарными движениями в системе,[2] то фазовый портрет можно также рассматривать как разбиение фазового пространства на области притяжения стационарных решений.[A: 1]

Классификацию характера особых точек системы уравнений можно провести на основании особенностей фазового портрета, поскольку как минимум для некоторых систем каждая особая точка системы дифференциальных уравнений является также и особой точкой в смысле, употребляемом в дифференциальной геометрии.[4]

Ф.п. обычно как-то деформируется при изменении параметров системы. Качественному изменению ф.п. соответствует исчезновение существующих и рождение новых стационарных решений, — и такое изменение ф.п. называют бифуркационной ситуацией.[A: 1]

Для удобства, изучение фазового портрета системы разделяют[4] на исследование характера движений системы:

  • вблизи состояний равновесия,
  • на всей фазовой плоскости.

При изучении фазового портрета интересует прежде всего общая топологическая картина движений на фазовой плоскости.[4]

Фазовая скорость[править | править вики-текст]

Фазовая скорость — это скорость изменения состояния системы; она соответствует скорости движения изображающей точки в фазовом пространстве.[4]

Для вычисления величины фазовой скорости вводят понятие «фазовый радиус-вектор», как это делается в классической механике.[3]

К примеру, для простейшей консервативной системы, описываемой уравнением , скорость изображающей точки вычисляется как:

и будет всюду определена однозначно, и обращается в ноль только в особой точке.[4] Модуль фазовой скорости в этом случае будет вычисляться как:

,

где:

 и  .

Вычисление фазовой скоростью даёт возможность более точно прослеживать изменения в системе. Так, к примеру, в случае бифуркации седло—узел можно обнаружить область состояний системы, в которой происходит значительное уменьшение модуля фазовой скорости.[A: 1]

Особенности систем разного типа[править | править вики-текст]

Механические системы[править | править вики-текст]

В классической механике фазовыми пространствами служат гладкие многообразия. В случае механических систем это пространство четной размерности, координатами в котором являются обычные пространственные координаты (или обобщённые координаты) частиц системы и их импульсы (или обобщённые импульсы). Кроме того, в механике движение изображающей точки определяется сравнительно простыми уравнениями Гамильтона, анализ которых позволяет делать заключения о поведении сложных механических систем.[источник не указан 54 дня]

Например, фазовое пространство для системы, состоящей из одной свободной материальной точки, имеет 6 измерений, три из которых — это три обычные координаты, а ещё три — это компоненты импульса. Соответственно, фазовое пространство для системы из двух свободных материальных точек будет содержать 12 измерений и т. д.

Термодинамика и статистическая механика[править | править вики-текст]

В термодинамике и статистической механике термин «фазовый пространство» имеет два значения: 1) он используется в том же смысле, что и в классической механике; 2) он может также относиться к пространству, которое параметризуется макроскопическими состояниями системы, такими как давление, температура и т.д.

Динамические системы[править | править вики-текст]

В теории динамических систем и теории дифференциальных уравнений фазовое пространство является более общим понятием. Оно не обязательно чётномерно и динамика в нём не обязательно задаётся уравнениями Гамильтона.[источник не указан 54 дня]

Случай нескольких систем[править | править вики-текст]

Если взять в рассмотрение несколько одинаковых систем, надо задать несколько точек в фазовом пространстве. Совокупность таких систем называют статистическим ансамблем. По теореме Лиувилля, замкнутая кривая (или поверхность), состоящая из точек фазового пространства гамильтоновой системы эволюционирует так, что площадь (или объем) заключенного в ней фазового пространства сохраняется во времени.[источник не указан 54 дня]

Примеры[править | править вики-текст]

Понятие фазового пространства широко используется в разных областях физики.[B: 1] [B: 2] Весьма полезным оно оказалось для изучения феноменов бифуркационной памяти.[A: 1]

Интерпретация состояния движущегося объекта как точки в фазовом пространстве разрешает парадокс Зенона.[источник не указан 2622 дня] (Парадокс состоит в том, что если мы описываем состояние объекта его положением в конфигурационном пространстве, то объект не может двигаться.)

Гармонический осциллятор[править | править вики-текст]

Простейшая автономная колебательная система получила название «гармонический осциллятор»; её динамика описывается линейным дифференциальным уравнением вида:

Такая система совершает периодические синусоидальные (гармонические) движения; колебательное движение не возникает лишь в случае и , т.е. когда осциллятор в начальный момент находится в состоянии равновесия — в этом случае он продолжает и дальше в нём оставаться. Координатное уравнение фазовой траектории такой системы задаёт интегральные кривые в виде семейства подобных (с постоянным соотношением осей) эллипсов, причём через каждую точку ф.п. проходит один и только один эллипс. Указанное состояние равновесия является особой точкой этой системы, — а именно центром.[3]

Квантовый осциллятор[править | править вики-текст]

Фазовое пространство состояний квантового осциллятора позволяет описать квантовый шум усилителя в терминах неопределенностей эрмитовой и анти-эрмитовой компонент поля; при этом не требуется предположение о линейности преобразования фазового пространства, осуществляемого усилителем.[A: 4] Производные передаточной функции усилителя определяют ограничение снизу на уровень квантового шума. Грубо говоря, чем более сложным является преобразование, тем больше квантовый шум.

Фазовое пространство позволяет построить единый формализм для классической и квантовой механики.[A: 5] Оператор эволюции формулируется в терминах скобки Пуассона; в квантовом случае эта скобка является обычным коммутатором. При этом классическая и квантовая механика строятся на одних и тех же аксиомах; они формулируются в терминах, которые имеют смысл как в классической, так и в квантовой механике.

Теория хаоса[править | править вики-текст]

Классическими примерами фазовых диаграмм из теории хаоса являются:

Оптика[править | править вики-текст]

Фазовое пространство широко используется в неизолирующей оптике,[B: 3] — ответвление оптики, посвященное освещению. Это также важное понятие в гамильтоновой оптикеruen.

См. также[править | править вики-текст]

Примечания[править | править вики-текст]

  1. Андронов, 1981, с. 38-41.
  2. 1 2 Андронов, 1981, Введение, с. 15-34.
  3. 1 2 3 4 5 Андронов, 1981, Глава I. линейные системы, с. 35-102.
  4. 1 2 3 4 5 6 7 Андронов, 1981, Глава II. Консервативные нелинейные системы, с. 103-167.

Литература[править | править вики-текст]

  • Книги
  1. Андронов А. А., Витт А. А., Хайкин С. Э. Теория колебаний. — 2-е изд., перераб. и испр.. — М.: Наука, 1981. — 918 с.
  2. Лихтенберг А. Динамика частиц в фазовом пространстве. — М.: Атомиздат, 1972. — 304 с.
  3. Julio Chaves. Introduction to Nonimaging Optics. — Second Edition. — CRC Press, 2015. — 786 с. — ISBN 978-1482206739.
  • Статьи
  1. 1 2 3 4 5 Фейгин М.И. Проявление эффектов бифуркационной памяти в поведении динамической системы (рус.) // Соросовский образовательный журнал : журнал. — 2001. — Т. 7, № 3. — С. 121—127.
  2. Nolte, D. D. The tangled tale of phase space (англ.) // Physics Today : журнал. — 2010. — Vol. 63, no. 4. — P. 31–33. — DOI:10.1063/1.3397041.
  3. Neishtadt, Anatoly On stability loss delay for dynamical bifurcation (англ.) // Discrete and Continuous Dymanical Systems — Series S : журнал. — 2009. — Vol. 2, no. 4. — P. 897—909. — ISSN 1937-1632. — DOI:10.3934/dcdss.2009.2.897.
  4. Кузнецов Д., Ройлих Д. Квантовый шум при отображении фазового пространства (рус.) // Оптика и Спектроскопия : журнал. — 1997. — Т. 82, № 6. — С. 990-995.
  5. Широков Ю. М. Квантовая и классическая механика в представлении фазового пространства (рус.) // ЭЧАЯ : журнал. — 1979. — Т. 10, № 1. — С. 5–50.

Ссылки[править | править вики-текст]

  • Определения этого понятия см. также в словарях:
    • Большая советская энциклопедия.
    • Математическая энциклопедия. — М.: Советская энциклопедия. И. М. Виноградов. 1977—1985.
    • Физическая энциклопедия.
    • Экономико-математический словарь.
  • В интернет-потрале «Физическая энциклопедия» см. статьи, уточняющие понятие ф.п. в статистической физике и ф.п. в теории динамических систем.
  • State space В Scholarpedia.org  (англ.)