Флуоресцентная микроскопия

Материал из Википедии — свободной энциклопедии
Перейти к: навигация, поиск
Схематическое изображение принципа действия флуоресцентного микроскопа

Флуоресцентная микроскопия (англ. fluorescence microscopy) — метод получения увеличенного изображения с использованием люминесценции возбуждённых атомов и молекул образца. Широко применяется в материаловедении и медико-биологических областях.

Описание[править | править вики-текст]

Молекулы способны поглощать кванты света и переходить в электронно-возбужденные состояния. Возвращение молекулы в «обычное» (основное) состояние, сопровождающееся излучением света, называют флуоресценцией. Поглощение и флуоресценция обуславливаются строением энергетических уровней электронов молекулы и поэтому является специфическим, для каждого типа молекулы, свойством (см. подробнее в статье электронно-колебательная спектроскопия).

Биологический материал, как правило, сам по себе флуоресцирует крайне слабо, но благодаря применению ярких и разнообразных флуоресцентных молекул (флуорофоров), способных специфически окрашивать разные структуры тканей и клеток, метод флуоресцентной микроскопии оказался очень ценным для медико-биологических наук.

Традиционные методы флуоресцентной микроскопии обладают существенно более низким разрешением по сравнению с электронной или атомно-силовой микроскопией. Однако в отличие от последних, оптическая микроскопия позволяет наблюдать за внутренней микроструктурой клеток и даже небольших организмов, причем не только фиксированных, но и живых. Благодаря этому флуоресцентная микроскопия оказалась наилучшим методом для изучения механизмов функционирования организмов на клеточном, субклеточном и молекулярном уровнях.

Во флуоресцентном микроскопе образец облучается светом с большей частотой, а изображение получают в оптическом спектре. Излучение образца, соответственно, пропускается через фильтр, отсекающий свет на частоте возбуждения. Изображение флюоресцентного препарата может быть сфотографировано специализированной цифровой камерой, позволяющей делать снимки с большой выдержкой. Для некоторых изображений это время может достигать 60 минут.

Интенсивное развитие флуоресцентной микроскопии на рубеже XX-го и XXI-го веков привело к развитию новых методов — двухфотонной и конфокальной микроскопии, а также ряда подходов, позволивших преодолеть дифракционный барьер оптического разрешения и достичь беспрецедентного нано-разрешения.

Одним из видов флуоресцентной микроскопии является конфокальная микроскопия — метод, позволяющий получать изображения с некоторой глубины в середине образца. Простейший метод, с помощью которого можно исследовать поверхность, называют эпифлуоресцентной микроскопией.

Флуоресцентная микроскопия полного внутреннего отражения[править | править вики-текст]

Метод флуоресцентной микроскопии полного внутреннего отражения (TIRFM) основан на явлении отражения электромагнитных волн от границы раздела двух прозрачных сред, которое возникает при условии, что волна падает из среды с более высоким показателем преломления под углом, превышающем критический (1/n). Интенсивность излучения, проникающего во вторую среду затухает по экспоненциальному закону, что позволяет детектировать флуоресцентные объекты, возбуждаемые этим излучением, в пограничном слое толщиной ~100 нм с разрешением до 10 нм[1]. Таким образом, TIRFM может по праву считаться одним из методов флуоресцентной наноскопии. В биологии метод используется для визуализации плазматической мембраны и примембранных структур клеток.

Флуоресцентная наноскопия[править | править вики-текст]

В последние годы было разработано несколько новых подходов в области флуоресцентной микроскопии, которые позволили преодолеть дифракционный барьер оптического разрешения и достичь беспрецедентного разрешения ~10 нм. Эти методы стали объединять общим термином флуоресцентная наноскопия.

Системы флуоресцентной наноскопии построены на трёх принципиально различающихся подходах:

  • улучшение фокусировки за счёт создания новых оптических схем и применения объективов с высокой угловой апертурой (4Pi, I5M и I5S микроскопия);
  • использование явления полного внутреннего отражения (total internal reflection fluorescence microscopy, TIRFM);
  • контролируемое «включение» и «выключение» флуоресцентных молекул и последовательное их детектирование (STED, GSD, SPEM (SSIM), RESOLFT, (F)PALM, STORM, PAINT).

Можно предвидеть несколько приложений флуоресцентных наноскопических методов в биологии и медицине. Наноскопия позволяет напрямую изучать взаимодействия между белками, ДНК и РНК, и, следовательно, может сыграть существенную роль в развитии геномики и протеомики, в изучении физиологии клетки, в понимании патофизиолоических механизмов, связанных с нарушением образования сложных белковых комплексов и т. п.[2]

Перечисленные подходы рассмотрены далее более подробно:

  • 4Pi и I5M реализованы на основе двухобъективной системы, которая позволяет улучшить разрешение вдоль оптической оси до 80 нм благодаря суммированию в фокальной точке двух встречных сферических фронтов света. I5S обладает улучшенным разрешением и в фокусной плоскости (до 100 нм).
  • TIRFM позволяет детектировать флуоресцентные объекты в пограничном слое толщиной ~100 нм с разрешением до 10 нм.
  • STED, GSD, SPEM (SSIM), RESOLFT, (F)PALM, STORM, PAINT. Поглощение кванта света молекулой сопровождается переходом электрона с основного энергетического уровня (S0) на возбужденный флуоресцентный уровень (синглетный S1 или триплетный T1). Поглощение также может индуцировать обратимые внутримолекулярные перестройки (например, цис-транс изомеризацию), в результате которых происходит изменение спектра флуоресценции. Любой из переходов S0 →S1, S0 →T1 может быть использован для включения/выключения флуорофоров и увеличения разрешения.

См. также[править | править вики-текст]

Примечания[править | править вики-текст]

  1. Saffarian S., Kirchhausen T. Differential evanescence nanometry: live-cell fluorescence measurements with 10-nm axial resolution on the plasma membrane // Biophys J. 2008. V. 94. P. 2333–2342.
  2. Peters R. From fluorescence nanoscopy to nanoscopic medicine // Nanomedicine. V. 3, 2008. P. 1–4.

Литература[править | править вики-текст]

  • Kässens M. et al. Basics of Light Microscopy & Imaging. — GIT Verlag GmbH & Co. KG, 2006. — 52 p.
  • Abbe, E. Beiträge zur Theorie des Mikroskops und der Mikroskopischen Wahrnehmung // Arch. Mikrosc. Anat. Entwicklungsmech. 1873. Bd. 9. S. 413–468.
  • Truskey, G.A., Burmeister, J.S., Grapa, E. el al. Journal of Cell Science Volume 103, Issue 2, 1992, P. 491–499.
  • Axelrod, D. Journal of Biomedical Optics Volume 6, Issue 1, January 2001, Pages 6–13.
  • Hell S.W. Far-Field Optical Nanoscopy // Science. 2007. V. 316. P. 1153–1158.

Ссылки[править | править вики-текст]