Формула Лейбница (производной произведения)

Материал из Википедии — свободной энциклопедии
Перейти к: навигация, поиск

Формула Лейбница для -ой производной произведения двух функций — обобщение правила дифференцирования произведения (и отношения) двух функций на случай -кратного дифференцирования.

Пусть функции и  — раз дифференцируемые функции, тогда

где  — биномиальные коэффициенты.

Примеры[править | править вики-текст]

В случае , например, имеем:

При получается известное правило производной произведения:

Доказательство и обобщение[править | править вики-текст]

Доказательство формулы осуществляется по индукции с использованием правила произведения. В мультииндексной записи формула может быть записана в более общем виде:

Эта формула может быть использована для получения выражения для композиции дифференциальных операторов. В самом деле, пусть P и Q — дифференциальные операторы (с коэффициентами, которые дифференцируемы достаточное число раз) и . Если R также является дифференциальным оператором, то справедливо равенство:

Непосредственное вычисление дает:

Эта формула также известна как формула Лейбница.

Литература[править | править вики-текст]

  • Шипачев В. С. Основы высшей математики: Учебное пособие для вузов / Под ред. акад. А. Н. Тихонова. — М.: Высшая школа, 1989. — 479 с. — ISBN 5-06-000048-6.
  • Зорич В. А. Математический анализ. Часть 1. — 2-e. — М.: ФАЗИС, 1997. — 554 с. — ISBN 5-7036-0031-6.