Функция приспособленности

Материал из Википедии — свободной энциклопедии
Перейти к навигации Перейти к поиску

Функция приспособленности (англ. fitness function) — функция оценки, определяющая меру приспособленности полученного решения.

История возникновения термина[править | править код]

Получила свое название из генетики. Позволяет оценить степень приспособленности конкретных особей в популяции и выбрать из них наиболее приспособленные (т.е. имеющие максимальные значения функции приспособленности) в соответствии с эволюционным принципом выживания "сильнейших" (лучше всего приспособившихся)

Применение в математике[править | править код]

Функция приспособления оказывает сильное влияние на работу генетических алгоритмов и должна иметь точное и корректное определение. В задачах оптимизации функция приспособленности, как правило, оптимизируется (максимизируется) и называется целевой функцией. В задачах минимизации целевая функция преобразуется, и проблема сводится к максимизации.

В теории управления — может принимать вид функции погрешности, а в теории игрстоимостной функции. При каждой итерации генетического алгоритма приспособленность каждой особи данной популяции оценивается при помощи функции приспособленности, и на основе этой оценки создается следующая популяция, составляющих множество потенциальных решений[1].

Условия работы функции[править | править код]

  1. Функция должна быть адекватно заданной. Это означает, что для успешного поиска необходимо, чтобы распределение значений совпадало с распределением реального качества решений.
  2. Функция должна иметь разнообразный рельеф, без больших «плоских» участков. То есть, несмотря на то что решение различаются, они имеют одинаковую оценку, а значит алгоритм не имеет возможности выбрать лучшее решение, выбрать направление дальнейшего развития. Эта проблема еще упоминается как «проблема поля для гольфа», где все пространство абсолютно одинаково, за исключением лишь одной точки, и является оптимальным решением - в этом случае алгоритм просто остановится или будет блуждать совершенно случайно.
  3. Функция приспособленности должна требовать минимум ресурсов. Поскольку это наиболее часто используемая деталь алгоритма, она оказывает существенное влияние на его скорость работы[2].

Функция приспособленности превращает пространство состояний в фитнес пейзаж (адаптивный ландшафт)[неизвестный термин], где каждая точка пространства имеет определенную «высоту», в соответствии со значением ее фитнеса.

См. также[править | править код]

Примечания[править | править код]

  1. Квашенкин, Давид Олегович Генетический алгоритм с запаздыванием // Вестник Тамбовского университета. Серия: Естественные и технические науки. — 2012-01-01. — Т. 17, вып. 1. — ISSN 1810-0198.
  2. УРАЛЬСКИЙ НИКОЛАЙ БОРИСОВИЧ, СИЗОВ ВАЛЕРИЙ АЛЕКСАНДРОВИЧ, КАПУСТИН НИКОЛАЙ КЛЕМЕНТЬЕВИЧ Оптимизация вычислительного процесса фитнесс-функции генетического алгоритма в распределённых системах обработки данных // Интернет-журнал Науковедение. — 2015-01-01. — Т. 7, вып. 6 (31).