Хассий

Материал из Википедии — свободной энциклопедии
Перейти к навигации Перейти к поиску
Хассий
← Борий | Мейтнерий →
108 Os

Hs

(Uhb)
ВодородГелийЛитийБериллийБорУглеродАзотКислородФторНеонНатрийМагнийАлюминийКремнийФосфорСераХлорАргонКалийКальцийСкандийТитанВанадийХромМарганецЖелезоКобальтНикельМедьЦинкГаллийГерманийМышьякСеленБромКриптонРубидийСтронцийИттрийЦирконийНиобийМолибденТехнецийРутенийРодийПалладийСереброКадмийИндийОловоСурьмаТеллурИодКсенонЦезийБарийЛантанЦерийПразеодимНеодимПрометийСамарийЕвропийГадолинийТербийДиспрозийГольмийЭрбийТулийИттербийЛютецийГафнийТанталВольфрамРенийОсмийИридийПлатинаЗолотоРтутьТаллийСвинецВисмутПолонийАстатРадонФранцийРадийАктинийТорийПротактинийУранНептунийПлутонийАмерицийКюрийБерклийКалифорнийЭйнштейнийФермийМенделевийНобелийЛоуренсийРезерфордийДубнийСиборгийБорийХассийМейтнерийДармштадтийРентгенийКоперницийНихонийФлеровийМосковийЛиверморийТеннессинОганесонПериодическая система элементов
108Hs
Unknown.svg
Electron shell 108 Hassium.svg
Внешний вид простого вещества
неизвестен
Свойства атома
Название, символ, номер Хассий/Hassium (Hs), 108
Атомная масса
(молярная масса)
[269] а. е. м. (г/моль)
Электронная конфигурация [Rn]5f146d67s2
Номер CAS 54037-57-9
108
Хассий
(270)
5f146d67s2

Ха́ссий (лат. Hassium, обозначается символом Hs; исторические названия эка-осмий, уннилоктий) — 108-й искусственный радиоактивный химический элемент VIII группы короткой формы (8-й группы длинной формы) периодической системы химических элементов; относится к трансактиноидам. Предположительно серебристо-белый металл; по химическим свойствам, вероятно, аналог осмия (Os)[1].

Предыстория[править | править код]

Впервые сообщения об открытии элемента 108 появились в начале 1970 года и были совершенно неожиданными для экстремально короткоживущих и трудноуловимых сверхтяжёлых химических элементов. По результатам экспедиции в пустынном районе вблизи полуострова Челекен у Каспийского моря группой учёных СССР под руководством В. В. Чердынцева на основании фиксирования треков (следов ядер) на образцах минерала молибденита был сделан смелый вывод об обнаружении элемента 108 с атомной массой 267 в природе. Сообщения об этом «открытии» попала в журнал «Наука и жизнь» (02/1970) и другие СМИ и в апреле 1970 года были обсуждены на заседаниях институтов АН СССР (геохимического, физических проблем). Впоследствии научная достоверность заключения была оспорена как недостаточно доказанная[2][3].

История[править | править код]

Достоверно элемент 108 был открыт в 1984 в Центре исследования тяжёлых ионов (нем. Gesellschaft für Schwerionenforschung, GSI), Дармштадт, Германия в результате бомбардировки свинцовой (208Pb) мишени пучком ионов железа-58 из ускорителя UNILAC[1]. В результате эксперимента были синтезированы 3 ядра 265Hs, которые были надёжно идентифицированы по параметрам цепочки α-распадов[4]. В весовых количествах не получен. Степени окисления от +2 до +8, расчётная конфигурация внешних электронных оболочек атома 5f146d67s2[1].

Одновременно и независимо эта же реакция исследовалась в ОИЯИ (Дубна, Россия), где по наблюдению трёх событий α-распада ядра 253Es также был сделан вывод о синтезе в этой реакции ядра 265Hs, подверженного α-распаду[5]. Поскольку методика, использовавшаяся в Дубне, не позволяла зарегистрировать распад самого ядра 265Hs[6].

В 1985 году Международный союз теоретической и прикладной химии (IUPAC) и Международный союз теоретической и прикладной физики (IUPAP) создали рабочую группу Transfermium (TWG) для оценки открытий и определения окончательных названий элементов с атомными номерами более 100. Рабочая группа провела встречи с делегатами из трех конкурирующих институтов; в 1990 году они установили критерии признания химических элементов, а в 1991 году закончили работу по оценке открытий. В 1993 году рабочая группа IUPAC опубликовала результаты, согласно которым основная заслуга в открытии элемента 108 принадлежит группе из Дармштадта[6].

Название[править | править код]

Первоначально, при т. н. «обнаружении элемента в природе», его назвали сергений (sergenium, Sg) (на то время эти символы не были заняты сиборгием) по местности обнаружения — в районе античного города Серика на Великом Шёлковом Пути. В связи с неподтверждённостью открытия и географической привязанностью это название более не предлагалось и вскоре исчезло из научного и информационного пространства.

После удачного искусственного синтеза элемент 108 предлагалось назвать оттоганий (ottohahnium, Oh) в честь Отто Гана — одного из учёных, открывших процесс деления ядер. В 1994 году IUPAC по устоявшейся традиции (только по фамилии) порекомендовала для элемента название ганий (hahnium, Hn)[7].

Но в 1997 году она изменила свою рекомендацию и утвердила название хассий[1][8] в честь немецкой земли Гессен (Hassia — латинское название средневекового княжества Гессен, центром которого был Дармштадт)[9].

Известные изотопы[править | править код]

Основная статья: Изотопы хассия

Хассий не имеет стабильных изотопов. Несколько радиоактивных изотопов были синтезированы в лаборатории либо путем слияния двух атомов, либо путём наблюдения распада более тяжёлых элементов. Сообщалось о двенадцати изотопах с массовыми числами от 263 до 277 (за исключением 272, 274 и 276), четыре из которых — 265Hs, 267Hs, 269Hs и 277Hs — имеют известные метастабильные состояния[10], хотя для 277Hs это не подтверждено[11]. Большинство из этих изотопов распадаются преимущественно через α-распад. Он наиболее распространенный из всех изотопов, для которых доступны всесторонние характеристики распада. Единственное исключение — 277Hs, который подвергается самопроизвольному делению[10]. Самые лёгкие изотопы, которые обычно имеют более короткие периоды полураспада, были синтезированы путём прямого синтеза между двумя более лёгкими ядрами и в качестве продуктов распада. Самым тяжелым изотопом, полученным прямым слиянием, является 271Hs; более тяжелые изотопы наблюдались только как продукты распада элементов с большими атомными номерами[12]. Наиболее стабильным изотопом хассия является 269Hs (α-излучатель)[1].

Изотоп Масса Период полураспада[13] Тип распада
264Hs 264 ≈0,8 мс α-распад в 260Sg;
спонтанное деление
265Hs 265 0.3+0,2
−0,1
мс
α-распад в 261Sg
266Hs 266 2,3+1,3
−0,6
мс
α-распад в 262Sg
267Hs 267 52+13
−8
мс
α-распад в 263Sg
269Hs 269 9,7+9,3
−3,0
с
α-распад в 265Sg
270Hs 270 22,0 с[13];
≈22 с[14]
α-распад в 266Sg
275Hs 275 0,15+0,27
−0,06
с
α-распад в 271Sg

Примечания[править | править код]

  1. 1 2 3 4 5 Мясоедов, 2017.
  2. SpringerLink — Atomic Energy, Volume 29, Number 5 (недоступная ссылка)
  3. New Outlook on the Possible Existence of Superheavy Elements in Nature
  4. G. Münzenberg et al. The identification of element 108 // Zeitschrift für Physik A. — 1984. — Т. 317, № 2. — С. 235—236. (недоступная ссылка)
  5. Yu. Ts. Oganessian et al. On the stability of the nuclei of element 108 with A=263–265 // Zeitschrift für Physik A. — 1984. — Т. 319, № 2. — С. 215—217. (недоступная ссылка)
  6. 1 2 R. C. Barber et al. Discovery of the transfermium elements // Pure and Applied Chemistry. — 1993. — Т. 65, № 8. — С. 1757—1814.
  7. Commission on Nomenclature of Inorganic Chemistry. Names and symbols of transfermium elements (IUPAC Recommendations 1994) // Pure and Applied Chemistry. — 1994. — Т. 66, № 12. — С. 2419—2421.
  8. Commission on Nomenclature of Inorganic Chemistry. Names and symbols of transfermium elements (IUPAC Recommendations 1997) // Pure and Applied Chemistry. — 1997. — Т. 69, № 12. — С. 2471—2473.
  9. Responses on the Report 'Discovery of the transfermium elements' // Pure and Applied Chemistry. — 1993. — Т. 65, № 8. — С. 1815—1824.
  10. 1 2 Audi, 2017, pp. 030001–133—030001–136.
  11. Hofmann et al., 2012.
  12. Thoennessen, M. The Discovery of Isotopes: A Complete Compilation (англ.). — Springer, 2016. — ISBN 978-3-319-31761-8. — doi:10.1007/978-3-319-31763-2.
  13. 1 2 Nudat 2.3
  14. J. Dvorak et al. Doubly Magic Nucleus 270108Hs162 // Physical Review Letters. — 2006. — Т. 97. — С. 242501.

Литература[править | править код]

Ссылки[править | править код]