Центроид треугольника

Материал из Википедии — свободной энциклопедии
Перейти к: навигация, поиск
Triangle.Centroid.svg

Центроид треугольника, (также барицентр треугольника и центр тяжести треугольника) — точка пересечения медиан в треугольнике.

Центроид традиционно обозначается латинской буквой M. Центроид треугольника относятся к замечательным точкам треугольника и он перечислен в энциклопедии центров треугольника Кларка Кимберлинга[en], как точка X(2).

Свойства[править | править вики-текст]

  • Центроид делит каждую медиану в отношении 2:1, считая от вершины.
  • Центроид лежит на отрезке, соединяющем ортоцентр и центр описанной окружности, и делит его в отношении 2:1 (см. прямая Эйлера).
  • Если в вершины треугольника поместить равные массы, то центр масс (барицентр) полученной системы будет совпадать с центроидом. Более того, центр масс треугольника с равномерно распределённой массой также находится в центроиде.
    • В частности, если M — центроид треугольника ABC то для любой точки O верно, что
      \overrightarrow{OM} = \frac{1}{3}(\overrightarrow{OA} + \overrightarrow{OB} + \overrightarrow{OC}).
  • Точка пересечения медиан является точкой, для которой сумма квадратов расстояний до вершин треугольника имеет наименьшее значение (теорема Лейбница).
  • Три отрезка прямых, соединяющих вершины треугольника с центроидом, разбивают данный треугольник на три равновеликих треугольника (равной площади).
  • Три отрезка прямых, соединяющих середины сторон треугольника с центроидом, разбивают данный треугольник на три равновеликих четырехугольника (равной площади).
  • При изогональном сопряжении центроид переходит в точку Лемуана (в точку пересечения трех симедиан треугольника).
  • Построим две прямые, каждая из которых проходит через точку Аполлония и точку Торричелли, отличную от изогонально сопряжённой ей. Такие прямые пересекутся в центроиде треугольника (в точке пересечения медиан треугольника).
  • Пусть ABC — треугольник на плоскости. Окружность, проходящая через центроид и две точки Аполлония треугольника ABC, называется окружностью Парри треугольника ABC.

История[править | править вики-текст]

Факт того, что три медианы пересекаются в одной точке, был доказан ещё Архимедом.

Вариации и обобщения[править | править вики-текст]

В четырёхугольнике[править | править вики-текст]

Центроид (барицентр или центр масс) произвольного четырёхугольника лежит в точке пересечения средних линий четырёхугольника и отрезка, соединяющего середины диагоналей, и делит все три отрезка пополам.

Четыре отрезка, каждый из которых соединяет вершину четырёхугольника с центроидом треугольника, образованного оставшимися тремя вершинами, пересекаются в центроиде четырёхугольника и делятся им в отношении 3:1, считая от вершины

См. также[править | править вики-текст]

Примечания[править | править вики-текст]

Литература[править | править вики-текст]