Цепь Чуа

Материал из Википедии — свободной энциклопедии
Перейти к навигации Перейти к поиску
Рисунок 1 — Эквивалентная схема для цепи Чуа состоящая из линейных пассивных элементов: катушки индуктивности (L), проводимости (G) и двух конденсаторов (C1, C2), а g — нелинейный элемент называемый диодом Чуа. В классическом варианте предлагаются следующие значения элементов: L = 1/7 Гн; G = 0,7 См; C1 = 1/9 Ф; C2 = 1 Ф.

Цепь Чуа или схема Чуа — простейшая электрическая цепь, демонстрирующая режимы хаотических колебаний. Была предложена профессором Калифорнийского университета Леоном Чуа[en] в 1983 году. Цепь состоит из двух конденсаторов, одной катушки индуктивности, линейного резистора и нелинейного резистора с отрицательным сопротивлением (обычно называемого диодом Чуа).

Математическая модель[править | править код]

Систему уравнений для цепи изображённой на рисунке 1 можно получить используя первое правило Кирхгофа и формулу для напряжения на катушке индуктивности:

где и — напряжения на ёмкостях, — ток через катушку идуктивности,  — кусочно-линейная функция характеризующая диод Чуа, определенная как

Рисунок 2. Вольт-амперная характеристика диода Чуа. Также показана нагрузочная прямая, от пересечения с которой образуются три точки равновесия d, 0 и −d

Эта нелинейная функция представлена графически на рисунке 2: крутизна внутреннего и внешнего участков есть Ga и Gb соответственно; при этом точки ±Е соответствуют изломам на графике.

Выполним следующие замены на безразмерные коэффициенты:

Основная система уравнений запишется в виде

где

Режимы работы[править | править код]

Цепь Чуа обнаруживает хаотические режимы колебаний в довольно узкой области параметров. Основные режимы колебаний условно показаны на рисунке 3.

Рисунок 3. Бифуркационная диаграмма режимов при m0 = −8/7, m1 = −5/7

В случае, когда параметры α и β принадлежат области, обозначенной на диаграмме цифрой 1, в системе существуют два устойчивых положения равновесия d и −d и одно неустойчивое, находящееся в начале координат 0. В этом случае цепь Чуа в зависимости от начальных условий будет стремиться к одному из двух устойчивых положений равновесия. В случае, когда параметры системы находятся в области помеченной цифрой 2, в окрестности точки равновесия d или −d существует устойчивый предельный цикл. По мере приближения к границе с хаотическим режимом система претерпевает цикл удвоений периода вплоть до образования хаотического аттрактора Рёсслера. Приращение значений параметра перед наступлением каждой последующей бифуркации удвоения периода уменьшается согласно соотношению Фейгенбаума. При попадании параметров в область, помеченную цифрой 6, образуется странный аттрактор (рисунок 4), называемый «двойной завиток» (англ. double scroll). При этом типе поведения траектория система проходит в окрестности и верхнего, и нижнего положения равновесия. Внутри области существования аттрактора «двойной завиток» также существуют окна периодичности, подобные тем, которые существовали в области аттрактора Рёсслера. Отличием их является то, что периодическая орбита в этом случае охватывает оба положения равновесия. Когда параметры α и β переходят в область, помеченную на рисунке 3 цифрой 11, в колебательной системе наблюдаются колебания неограниченно нарастающей амплитуды вне зависимости от начальных условий. Поскольку диод Чуа реализуется на операционных усилителях, он имеет ограниченный динамический диапазон, и поэтому в системе существует также большой по размерам устойчивый предельный цикл, охватывающий все сегменты характеристики диода Чуа.

На рисунках 5, 6 показаны временные зависимости колебаний, обнаруживаемых данной системой.

Осциллятор Чуа[править | править код]

Термин «Осциллятор Чуа» используется для рассмотрения цепи Чуа с учётом активного сопротивления катушки индуктивности L. Данная схема имеет ещё большее число разнообразных режимов и может быть реализована практически (рисунок 7).

Рисунок 7. Практическая схема осциллятора Чуа. L1 = 8,5 мГн, C1 = 4,8 нФ, C2 = 69 нФ, R = 1,3 кОм

Принимая R0 — активное сопротивление катушки индуктивности L, получим систему уравнений

Лёгкость практической реализации, а также наличие относительно простой математической модели делает цепь Чуа удобной моделью для изучения хаоса.

См. также[править | править код]

Мемристор

Литература[править | править код]

Ссылки[править | править код]