Витамин B12
Цианокобаламин | |
---|---|
| |
Общие | |
Хим. формула | С63H88CoN14O14P |
Физические свойства | |
Состояние | твёрдое, красного цвета |
Молярная масса | 1355,38 г/моль |
Термические свойства | |
Температура | |
• плавления | > 300 °C |
• кипения | > 300 °C |
• вспышки | нет данных °C |
Классификация | |
Рег. номер CAS | 68-19-9 |
PubChem | 16212801 |
SMILES | |
Безопасность | |
NFPA 704 | |
Приведены данные для стандартных условий (25 °C, 100 кПа), если не указано иное. | |
Медиафайлы на Викискладе |
Витами́нами B12 называют группу биологически активных веществ, называемых кобаламинами и относящиеся к корриноидам, содержащим в структуре атом кобальта (III) и являющиеся хелатными соединениями[1][2].
В научной литературе под витамином B12 обычно подразумевают цианокобаламин, который свободно преобразуется в одну из коферментных форм в человеческом организме[3]. В форме цианокобаламина в организм человека поступает основное количество витамина B12, при этом он не является синонимом B12, несколько других соединений также обладают B12-витаминной активностью[4]. Витамин B12 также называется внешним фактором Касла[5].
В природе продуцентами этого витамина являются бактерии и археи, в растениях и животных не синтезируется[6].
История открытия
[править | править код]Впервые влияние на развитие анемии недостатка какого-то вещества обнаружил исследователь Уильям Мёрфи в эксперименте на собаках, у которых была искусственно вызвана анемия. Подопытные собаки, которым давали в пищу большое количество печени, излечивались от анемии. Впоследствии учёные Джордж Уипл и Джордж Майнот поставили перед собой задачу выделить из печени фактор, непосредственно отвечающий за это лечебное свойство. Это им удалось, новый противоанемийный фактор получил название витамина B12, и все трое учёных в 1934 году были удостоены Нобелевской премии по медицине[7].
Молекулярную химическую структуру цианокобаламина установила Дороти Кроуфут-Ходжкин в 1956 году по данным рентгеноструктурного анализа[8].
Химическое строение
[править | править код]К кобаламинам относятся[1][9]:
- собственно цианокобаламин (Со-α-[α-(5,6-диметил-бензимидазолил)]-(Со-β-циано)кобамид; CN-Cbl; С63H89O14N14PCo) в котором с кобальтом связывается CN–-группа, наиболее устойчивое соединение, синтезируемое или образующееся при искусственном выделении из живых организмов, в естественных условиях не встречается;
- гидроксокобаламин (или оксикобаламин, или витамин B12a: Со-α-[α-(5,6-диметил-бензимидазолил)]-(Со-β-гидроксо)кобамид; OH-Cbl; С62H90O15N13PCo) в котором CN– заменена на OH–-группу, природная активная форма витамина B12 присутствующая в организмах животных, обратимо превращается в кислой среде в аквакобаламин[10];
- аквакобаламин (или витамин B12b: Со-α-[α-(5,6-диметил-бензимидазолил)]-(Со-β-аква)кобамид; aq-Cbl; С62H91O15N13PCo) продуцируется микроорганизмами, обратимо превращается в щелочной среде в гидроксокобаламин;
- нитрокобаламин (или витамин B12c) в котором CN– заменена на ONO–-группу;
- коферментные формы витамина B12: метилкобаламин и кобамамид[11];
- диаквакобинамид[12].
В природе обнаружены либо искусственно синтезированы кобаламины и с другими лигандами: сульфатокобаламин (SO3-), хлорокобаламин (Cl-), бромокобаламин (Br-), тиоцианатокобаламин (SHC-), дицианокобаламин [(RCo—CN)CN]-. Возможно образование гексаперхлората цианокобаламина. Витамин B12с образуется из витамина B12b под воздействием азотистой кислоты, также синтезируется Streptomyces griseus[англ.]. Все производные кобаламина проявляют биологическую активность витамина B12. При взаимодействии с CN-, производные превращаются в цианокобаламин. В кислой среде из цианокобаламина образуется биологический низкоактивный циано-13-эпикобаламин (неовитамин B12) в котором пропионамидная группа в кольце «C» (с метильной группой) коррина пространственно расположена с другой стороны. При одноэлектронном восстановлении молекулы цианокобаламина образуется устойчивый в кристаллическом состоянии витамин B12t c двухвалентным атомом кобальта, при двухэлектронном восстановлении получается витамин B12s устойчивый в водных растворах и под воздействием кислорода воздуха превращающегося в витамин B12a/B12b в зависимости от pH раствора. Для получения меченых радиоизотопных молекул цианокобаламина либо добавляют радиоактивный изотоп 60Co при культивировании микроорганизмов, либо к оксикобаламину добавляют синильную кислоту с изотопом 14С[2].
B12 имеет самое сложное по сравнению с другими витаминами химическое строение, основой которого является корриновое кольцо. Коррин во многом похож на порфирины (сложные химические структуры, входящие в состав гема, хлорофилла и цитохромов), но отличается от порфиринов тем, что два пятичленных гетероцикла в составе коррина соединены между собой непосредственно, а не метиленовым мостиком. В центре корриновой структуры располагается ион кобальта, образующий четыре координационные связи с атомами азота. Ещё одна координационная связь соединяет кобальт с диметилбензимидазольным нуклеотидом. Последняя, шестая координационная связь кобальта остаётся свободной: именно по этой связи и присоединяется цианогруппа, гидроксильная группа, метильный или 5'-дезоксиаденозильный остаток с образованием четырёх вариантов витамина B12, соответственно. Ковалентная связь углерод-кобальт в структуре цианокобаламина — единственный известный в живой природе пример ковалентной связи переходный металл-углерод.
Получение витамина B12
[править | править код]До освоения синтеза витамина B12 он мог добываться экстракцией из печени животных. Сначала печень, а затем её экстракт использовались в лечении пернициозной анемии[13].
Химический синтез
[править | править код]Полный химический синтез цианокобаламина[англ.] впервые был осуществлён в 1972 году в результате многолетней совместной работы двух исследовательских групп (одна из которых, руководимая Робертом Вудвордом, работала в Гарварде, а другая, возглавляемая Альбертом Эшенмозером, в Швейцарском федеральном технологическом институте в Цюрихе). Первые работы над синтезом витамина В12 были начаты ещё в начале 60-х годов 20 века. На разработку общей стратегии синтеза и саму работу ушло более 10 лет. В ходе планирования синтеза, молекула была условно разделена на два основных фрагмента, синтезом которых и занимались группы, руководимые Вудвордом и Эшенмозером. Особая сложность синтеза биологически активного витамина В12 была обусловлена, в частности, наличием в корриновом кольце 9 хиральных (оптически активных) атомов углерода. В общей сложности в работах по синтезу, на протяжении ряда лет, участвовали порядка 100 учёных из примерно 20 стран, а сама разработанная схема синтеза включала 95 стадий[14][15]. Успешный полный синтез соединения столь сложной структуры явился выдающимся достижением синтетической органической химии и на практике продемонстрировал принципиальную возможность химического синтеза "любого" природного соединения, вне зависимости от сложности строения его молекулы.
Микробиологическое производство
[править | править код]Для получения препаратов витамина B12 (в основном цианокобаламина) в промышленных масштабах для нужд медицины и сельского хозяйства используется микробиологическое производство. Для производства применяют микроорганизмы и их штаммы-мутанты, такие как[9][16]:
- для медицинских препаратов — Propionibacterium[англ.] shermanii (штамм М-82 с выходом продукта до 58 мг/л), Propionibacterium freudenreichii[англ.], Pseudomonas denitrificans[англ.] (штамм MB 2436 с выходом продукта до 59 мг/л). Используется глубинное культивирование;
- для кормовых концентратов витамина B12 — Methanococcus[англ.] halophilus (с выходом продукта 16-42 мг/л, в питательные среды также добавляются пивные или кормовые дрожжи в качестве источника некоторых питательных веществ и создания благоприятной культуральной среды для метанобразующих бактерий, а также для обогащения кормов витаминами B2, B6, PP). Используется метод ферментации. При производстве так же образуются сопутствующие балластные продукты как фактор А, фактор B (предшественник витамина — кобинамид), фактор III (5-оксибензилиндазол), псевдовитамин B12 и ряд подобных.
Промышленное производство витамина B12 с помощью пропионовокислых бактерий включает следующие технологические стадии[17]:
- в течение года в железобетонных ферментерах происходит непрерывное сбраживание барды комплексом бактерий;
- полученная метановая бражка сгущается;
- сгущённая масса сушится на распылительной сушилке.
Из-за того, что витамин B12 неустойчив при тепловой обработке, особенно в щелочной среде, в метановую бражку перед выпариванием добавляют хлор до оптимального значения pH 5,0—5,3, что делает среду кислой, также добавляется сульфит натрия до оптимального содержания 0,07—0,1%[17].
Метаболизм в организме
[править | править код]В желудке желудочный сок растворяет связанный с белками пищи B12. Формы в таблетках могут проходить через желудок, но для всасывания свободного B12 (не связанного с белками пищи) желудочный сок не нужен. В желудке вырабатывается внутренний фактор Кастла (в некоторых источниках — «Касла»), необходимый для всасывания B12 в кишечнике[18]. R-протеин (другие названия — гаптокоррин и кобалофилин) — связывающий B12 белок слюны, но действовать он начинает в желудке после того, как желудочный сок высвободит B12 из белкового комплекса, тогда этот протеин связывается с ним для того, чтобы сам B12 также не был разрушен желудочным соком[19]. Затем B12 соединяется с внутренним фактором Кастла — ещё одним связывающим белком, который синтезируется париетальными клетками желудка, его выработка стимулируется гистамином, гастрином, пентагастрином и непосредственно пищей. В двенадцатиперстной кишке протеазы высвобождают B12 из комплекса с R-пептидом, затем B12 связывается с внутренним фактором, и только в таком связанном с внутренним фактором виде он распознается рецепторами поглощающих энтероцитов подвздошной кишки. Внутренний фактор защищает B12 от поедания кишечными бактериями[20].
Закись азота нарушает метаболизм витамина B12, поэтому при использовании закиси азота для анестезии (например, при стоматологических операциях) и пограничном уровне витамина B12 развивается полинейропатия, вызванная дефицитом B12[21][22]. Также в зоне риска находятся люди, постоянно работающие с закисью азота, в случае плохого уровня проветривания помещений[22]. Подобный дефицит требует терапии фолатами и B12.
Биохимические функции
[править | править код]Ковалентная связь C—Co кофермента B12 участвует в двух типах ферментативных реакций:
- Реакции переноса атомов, при которых атом водорода переносится непосредственно с одной группы на другую, при этом замещение происходит по алкильной группе, спиртовому атому кислорода или аминогруппе.
- Реакции переноса метильной группы (—CH3) между двумя молекулами.
В организме человека есть только два фермента с коферментом B12[19]:
- Метилмалонил-КоА-мутаза, фермент, использующий в качестве кофактора аденозилкобаламин и при помощи реакции, упомянутой выше в п. 1, катализирует перестановку атомов в углеродном скелете. В результате реакции из L-метилмалонил-КоА получается сукцинил-КоА. Эта реакция является важным звеном в цепи реакций биологического окисления белков и жиров.
- 5-метилтетрагидрофолат-гомоцистеин-метилтрансфераза, фермент из группы метилтрансфераз, использующий в качестве кофактора метилкобаламин и при помощи реакции, упомянутой выше в п. 2, катализирует превращение аминокислоты гомоцистеина в аминокислоту метионин.
Применение препарата в медицине
[править | править код]Недостаток в организме витамина В12 вследствие снижения его поступления в первую очередь из-за пониженной секреции внутреннего фактора Касла, нарушения абсорбции витамина из просвета кишечника при ряде заболеваний, при глистных инвазиях и дисбактериозах, синдроме слепой петли, реже вследствие алиментарной недостаточности из-за неполноценного питания или отсутствия транскобаламина II приводит к развитию B12-дефицитной анемии[23].
Цианокоболамин для лечебных целей выпускается промышленностью в виде растворов для парентерального введения, для целей профилактики его дефицита включается в состав ряда поливитаминных препаратов.
Оксикобаламин, кроме тех же показаний как и цианокобаламин[24], так же применяется в качестве антидота при отравлениях цианидами и при передозировке натрия нитропруссида, так как цианистое основание более тропно к кобальту в молекуле оксикоболамина, связывает цианистое основание в безвредную форму — цианокобаламин.
Фармакокинетика
[править | править код]Связь с белками плазмы — 90 %. Максимальная концентрация после подкожного и внутримышечного введения — через 1 час. Период полувыведения — 500 дней. Из печени выводится с желчью в кишечник и снова всасывается в кровь[25].
Заболевания, связанные с недостатком витамина
[править | править код]При недостатке витамина В12 развиваются некоторые неврологические состояния и заболевания, например, анемия[26], подострая комбинированная дегенерация спинного мозга[англ.][27], полинейропатия[26].
Обычно дефицит витамина B12 лечат внутримышечными инъекциями препарата цианокобаламина. В последнее время была доказана достаточная эффективность пероральной компенсации дефицита пищевыми добавками в достаточной дозе. Суточный расход витамина B12 организмом человека оценивается примерно в 2—5 мкг[28].
Лабораторная химическая диагностика
[править | править код]Поскольку не существует золотого стандарта теста на дефицит витамина В12, для подтверждения предполагаемого диагноза проводится несколько различных лабораторных исследований.
Сывороточное значение витамина B12 является довольно неподходящим, поскольку оно изменяется поздно, а также относительно нечувствительным и неспецифичным[29].
Метилмалоновая кислота в моче или плазме крови считается функциональным маркером витамина В12, который повышается при истощении запасов витамина В12. Часто для более точной оценки наряду с метилмалоновой кислотой определяют гомоцистеин[29]. Однако повышенный уровень метилмалоновой кислоты может также указывать на часто упускаемое из виду метаболическое расстройство - комбинированную малоновую и метилмалоновую ацидурию (КМАММА) [30][31].
Самым ранним маркером дефицита витамина В12 является низкий уровень холотранскобаламина, который представляет собой комплекс витамина В12 и его транспортного белка[29].
Применение в ветеринарии
[править | править код]Обогащение кормов (включение в рацион) сельскохозяйственных животных витамином B12 способствует увеличению их продуктивности до 15 %[9].
Этот раздел статьи ещё не написан. |
Источники витамина
[править | править код]Продукт | мкг/100 г |
---|---|
Говяжья (или телячья) и баранья печень (приготовленные) | 70,5—88,0 |
Бараньи почки (приготовленные) | 78,9 |
Телячьи почки (приготовленные) | 36,9 |
Говяжьи почки (приготовленные) | 24,9 |
Куриная, индюшачья или свиная печень (приготовленная) | 16,8—31,2 |
Потроха индейки (приготовленные) | 16,0 |
Паштет из гусиной или куриной печени | 8,1—9,4 |
Говяжий фарш (приготовленный) | 3,2—3,6 |
Различные говяжьи обрезки (приготовленные) | 1,7—3,3 |
Салями из говядины или свинины | 1,2—2,8 |
Колбасные изделия | 0,5—2,6 |
Полоски бекона (приготовленные) | 1,2—1,6 |
Свиной паштет (приготовленный) | 1,0—1,2 |
Ветчина (приготовленная) | 0,9 |
Различные свиные обрезки (приготовленные) | 0,6—1,2 |
Курица, индейка или утка (приготовленные) | 0,2—0,4 |
Продукт | мкг/100 г |
---|---|
Мидии | 24,0 |
Устрицы | 17,6—34,8 |
Двустворчатые моллюски, за исключением устриц и мидий | 19,4 |
Скумбрия (приготовленная) | 18,0—19,0 |
Атлантическая сельдь (копчёная) | 18,6 |
Икра (сырая) | 12,0 |
Камчатский краб (приготовленный) | 11,4 |
Обыкновенный тунец (сырой или приготовленный) | 10,9—12,4 |
Сардины (консервированные в масле или томатном соусе) | 9,0 |
Икра чёрная или красная | 8,0 |
Форель (приготовленная) | 4,1—7,4 |
Нерка (приготовленная) | 5,8 |
Горбуша (консервированная с костями) | 4,9 |
Атлантический лосось, дикий (приготовленный) | 3,0 |
Тунец (серовато-розового оттенка, консервированный в воде) | 2,9 |
Продукт | Содержание |
---|---|
Швейцарский сыр Эмменталь | 3,4 мкг/100 г |
Сыры: фета, гауда, эдам, грюйер, бри, чеддер, фонтина, моцарелла, проволоне | 1,4—1,8 мкг/100 г |
Ломтики плавленного сыра чеддер | 0,8 мкг/100 г |
Молоко | 0,4—0,5 мкг/100 мл |
Обезжиренное молоко | 0,5 мкг/100 мл |
Пахта | 0,4 мкг/100 мл |
Зернёный творог | 0,44—0,6 мкг/100 мл |
Йогуртный напиток | 0,5 мкг/100 мл |
Йогурт с фруктовой прослойкой на дне | 0,285—0,342 мкг/100 г |
Греческий йогурт с фруктовой прослойкой на дне | 0,285 мкг/100 г |
Греческий йогурт | 0,017—0,342 мкг/100 г |
Шоколадное молоко | 0,036 мкг/100 мл |
Йогурт | 0,028 мкг/100 г |
Витамин B12 не синтезируется в организме человека и поступает в организм вместе с пищей животного происхождения или с добавкой. Растительная пища практически не содержит витамина B12. Всасывается витамин в нижнем отделе тонкой кишки. Несмотря на то, что он вырабатывается бактериями в толстой кишке, следующей за тонкой, толстая кишка не способна его всасывать, а в тонкой бактерии практически отсутствуют[33]. Мало того, витамин B12 бактериями также поглощается, поэтому при заболеваниях, из-за которых в тонкой кишке резко увеличивается количество бактерий, у больных может возникнуть B12-ассоциированная анемия в результате соперничества в поглощении витамина между бактериями, обитающими в тонкой кишке и их носителем[34]. Непоглощённые бактериями остатки витамина B12 выводятся вместе с калом[35].
Многие травоядные животные также не могут синтезировать, и в их кишечнике не всасывается вырабатываемый обитающими там бактериями витамин B12. Однако жвачные животные, включая крупных рогатый скот, имеют специальный отдел желудка — рубец, заселённый производящими витамин B12 симбиотическими бактериями, что позволяет всасывать его в тонкой кишке[33]. После всасывания в кишечнике витамин попадает в кровь, а затем накапливается в печени и мышцах животного или попадает в молоко дойного скота[36]. Другие травоядные животные, — кролики, мыши, крысы и некоторые виды приматов для получения витамина используют копрофагию[33]. Свиньи и куры всеядны, поэтому витамин поступает к ним вместе с животной пищей, однако его содержание в сыром мясе этих животных ниже, чем в мясе жвачных животных[36].
В водоёмах витамин B12 производится бактериями и археями, поглощается фитопланктоном и попадает в зоопланктон. В конечном итоге, по пищевой цепи, витамин переносится в тела хищных рыб и его концентрация в мясе крупных рыб оказывается выше, чем в мясе мелких. Большое количество витамина B12 накапливается в печени и почках тунца и лосося[37]. При этом потери витамина в филе рыбы при различных видах кулинарного приготовления оказываются достаточно небольшими — от 2,3 % до 14,8 %[38].
Хорошими источниками витамина B12 для человека являются говяжья, свиная и куриная печень, мясо и молоко жвачных животных, рыба, а также ферментированные молочные продукты, такие как сыр и йогурт[36]. Тем не менее при кулинарном приготовлении мяса (за исключением вакуумной обработки) значительное количество витамина разрушается[39]. Потребление же яиц практически не увеличивает содержание витамина B12 в крови[36] (из яиц усваивается менее 9 % витамина)[40]. В целом у здоровых людей из пищи усваивается лишь примерно половина содержащегося в ней витамина[41], при этом с увеличением потребления витамина B12 при приёме пищи его усвояемость уменьшается[40].
Большинству растений витамин B12 для нормальной жизнедеятельности не требуется, и они его не синтезируют[42]. Фрукты, овощи и зерновые культуры практически не содержат витамина B12[32]. Лишь небольшое количество, менее 0,1 мкг на 100 г, обнаружили в некоторых растениях: его содержат брокколи, спаржа, Белокопытник японский и пророщенный маш, что может объясняться способностью растений всасывать витамин из некоторых органических удобрений[43]. Так, исследования показали, что удобрение почвы коровьим навозом увеличивает содержание B12 в листьях шпината примерно на 0,14 мкг на 100 г[44]. Некоторое количество витамина присутствует в таких ферментированных продуктах, как темпе и натто, однако в самих соевых бобах, из которых эти продукты изготовлены, его обнаружить не удаётся[45]. Небольшое количество B12 может также накапливаться в растениях в результате взаимодействия с бактериями[41].
Витамин B12 обнаруживался и в плодовых телах высших грибов, не способных его синтезировать, что тоже может объясняться взаимодействием с бактериями[42]. Обычно в съедобных грибах содержится незначительное количество витамина B12 (менее 0,1 мкг на 100 г у сушёных грибов), однако некоторые грибы являются исключением. Так, в высушенных вороночнике рожковидном и лисичке обыкновенной содержание B12 варьируется от 1,09 до 2,65 мкг на 100 г, а в высушенном шиитаке содержится примерно 5,6 мкг на 100 г. При этом считается, что, несмотря на значительное содержание, в шиитаке витамин также попадает извне, предположительно, в результате взаимодействия с синтезирующими B12 бактериями[46].
В пищевой промышленности витамином B12 иногда обогащают такие продукты, как сухие завтраки[47], пищевые дрожжи, соевое молоко и вегетарианские заменители мяса[48].
Для веганов существуют рекомендации наладить регулярный приём препаратов кобаламина либо употреблять пищу, обогащённую B12, так как растительная пища или не содержит в себе этого витамина, или содержит в слишком малых количествах, а организм человека синтезировать его не может. Дефицит B12 у веганов ведёт к риску развития заболеваний сердца и осложнений при беременности[49].
Важный источник витамина — пищевые добавки. Рынок пищевых добавок предлагает большое количество разнообразных вариантов: мультивитамины с обычным содержанием B12 5—25 мкг; комплексы витаминов группы B с обычным содержанием 50—500 мкг; добавки только с витамином B12 могут содержать 500—1000 мкг[50]. Такие высокие количества обусловлены различиями форм B12 (цианкобаламин, аденозилкобаламин, метилкобаламин, гидроксикобаламин) и различиями в количестве усваиваемого витамина (например, для форм 500 мкг в одной таблетке абсорбция составляет около 2%). Маркировка добавок должна содержать наименование формы, количество на дозу и процент от рекомендованного суточного потребления.
Нормы потребления
[править | править код]Норма потребления, установленная в США, соответствует 2,4 мкг в день для взрослого человека[51], а верхний предел пока не установлен[32]. Однако расход организма соответствует 2—5 мкг в день, что может превышать установленную суточную норму потребления. Одно из исследований показало, что потребление 6 мкг в день является достаточным для поддержания нормального уровня B12 в плазме крови[51].
Возрастная группа | Возраст | Суточная норма потребления витамина B12, мкг (рекомендации Управления пищевых добавок (ODS) NIH)[52] |
---|---|---|
Младенцы | до 6 месяцев | 0,4 |
Младенцы | 7—12 месяцев | 0,5 |
Дети | 1—3 года | 0,9 |
Дети | 4—8 лет | 1,2 |
Дети | 9—13 лет | 1,8 |
Мужчины и женщины | 14 лет и старше | 2,4 |
Беременные женщины | Любой возраст | 2,6 |
Кормящие женщины | Любой возраст | 2,8 |
Злоупотребление витамином B12
[править | править код]В выводах, сделанных по результатам статистического анализа под руководством Theodore M. Brasky, значится, что ежедневное употребление B12 как отдельного витамина в течение 10 лет в повышенных дозах более 55 мкг в день увеличивает риск развития рака лёгких у мужчин на 30—40 %. Следует также обратить внимание, что существенная доля заболевших имела долгий анамнез табакокурения. У женщин данная закономерность не выявлена, хотя по результатам исследования отмечается, что в рационе исследуемых женщин витаминов группы B содержалось больше. Аналогичные же результаты выявлены и при употреблении в повышенных дозах витаминов B6 и B9[53].
Псевдовитамины B12
[править | править код]Под термином «псевдовитамин B12» подразумевают похожие на этот витамин вещества, обнаруженные в некоторых живых организмах, например, в цианобактериях (ранее известны как сине-зелёные водоросли) рода Спирулина. Такие витаминоподобные вещества не обладают витаминной активностью для организма человека[54][55]. Более того, эти вещества могут представлять определённую опасность для вегетарианцев, пытающихся с их помощью восполнить дефицит витамина, так как показано в опытах in vitro, что они блокируют метаболизм клеток молочной железы человека[55]. Также их наличие в крови показывает при анализе нормальную концентрацию витамина B12, хотя эти соединения не имеют витаминной активности, что может привести к ошибочному диагнозу и, в результате — к неправильному лечению пернициозной анемии.
Псевдовитамины B12 синтезируются бактериями в анаэробных условиях в кишечнике некоторых животных, в частности жвачных, в канализационном шламе. Не являются витаминами для животных, но являются факторами роста для некоторых бактерий, как и сами витамины B12. Структурно соответствуют цианокобаламину, но вместо 5,6-диметилбензимидазолнуклеозида содержат другие основания. К ним относятся[2]:
- «псевдовитамин B12» (или псевдовитамин B12b, циан-β-кобаламин, циан-γ-кобаламин) — 7α-аденилкобамид цианид;
- «B12-фактор» — 7α-(2-метилмеркаптоаденил)кобамид цианид;
- «Фактор III» — α-(5-оксибензимидазолил)кобамид цианид;
- «Фактор A» (или псевдовитамин B12d, псевдовитамин B12f, псевдовитамин B12m, циан-ω-кобаламин) — 7α-(2-метиладенил)кобамид цианид;
- «Фактор С» — 9β-гуанозил-5пирофосфокобинамид дицианид;
- «Фактор G» — 7α-гипоксантилкобамид цианид;
- «Фактор H» — 7α-(2-метилгипоксантил)кобамид цианид;
- α-бензимидазолилкобамид цианид;
- α-(5-метилбензимидазолил)кобамид цианид;
- 7α-гуанозилкобамид цианид.
Псевдовитамины продуцируемые микроорганизмами одновременно с витаминами и обладая схожими физико-химическими свойствами, представляют определённую трудность для очистки витаминов при промышленном производстве, в частности для этих целей может применяться электрофоретическое разделение.
См. также
[править | править код]Примечания
[править | править код]- ↑ 1 2 Волкова С. А., Боровков Н. Н. Основы клинической гематологии // Н. Новгород: Издательство Нижегородской государственной медицинской академии, 2013. — 400 с. (С. 36—38). ISBN 978-5-7032-0882-3.
- ↑ 1 2 3 Березовский В. М. Химия витаминов. / Изд. 2-е перераб. и доп. // М.: Пищевая промышленность, 1973 — 632 с., илл. (стр. 577—620). УДК 577.16.
- ↑ Watanabe, 2007, Introduction, p. 1266—1267.
- ↑ Herbert V. Vitamin B-12: plant sources, requirements, and assay (фр.) // The American Journal of Clinical Nutrition[англ.] : magazine. — 1988. — Vol. 48, no 3Suppl. — P. 852—858. — PMID 3046314.
- ↑ Алексеев Г. А. Касла факторы // Большая медицинская энциклопедия : в 30 т. / гл. ред. Б. В. Петровский. — 3-е изд. — М. : Советская энциклопедия, 1979. — Т. 10 : Кабаков — Коалесценция. — 528 с. : ил.
- ↑ Cтатьи - Витамины - Витамин B12 - Электронная Медицина - Витаминные и минеральные премиксы, Микроцид и Феникс от производителя . elm.su. Дата обращения: 19 марта 2022. Архивировано 29 июня 2020 года.
- ↑ Minot, George Richards (1885-1950), physician and pathologist (англ.). American National Biography. Дата обращения: 19 марта 2022.
- ↑ Dorothy Mary Crowfoot Hodgkin, O.M. 12 May 1910--29 July 1994 on JSTOR (англ.). jstor.org. Дата обращения: 10 декабря 2018. Архивировано 11 декабря 2018 года.
- ↑ 1 2 3 Под ред. Столяровой В. А. Новый справочник химика и технолога. Часть 2: Сырьё и продукты промышленности органических и неорганических веществ // СПб.: АНО НПО «Профессионал», 2005, 2007 — 1142 с. (С. 1014-1019). ISBN 5-98371-028-1
- ↑ Ржечицкая Л. Э., Гамаюрова В. С. Пищевая химия. Часть 2: Водорастворимые витамины / Министерство образования и науки России, Казанский национальный исследовательский технологический университет // Казань: Издательство КНИТУ, 2013 - 140 с. (128-131). ISBN 978-5-7882-1499-3.
- ↑ Докучаева Е. А. Витамины // Общая биохимия / под ред. С. Б. Бокутя. — Минск: ИВЦ Минфина, 2017. — 52 с. — ISBN 978-985-7142-97-2.
- ↑ Polina N. Kucherenko, Denis S. Salnikov, Thu Thuy Bui, Sergei V. Makarov. Interaction of Aquacobalamin and Diaquacobinamide with Cyanamide / Ivanovo State University of Chemistry and Technology // Статья в журнале Macroheterocycles, 2013, № 6 (3). ISSN 1998-9539. С. 262-267, DOI: 10.6060/mhc120952m.
- ↑ I. Chanarin. Historical review: a history of pernicious anaemia (англ.) // British Journal of Haematology. — 2000. — November (vol. 111, iss. 2). — P. 407–415. — ISSN 0007-1048. — doi:10.1046/j.1365-2141.2000.02238.x. — PMID 11122079. Архивировано 14 февраля 2022 года.
- ↑ Р.Б. Вудворд. Полный синтез витамина В12 (рус.) // Успехи химии : журнал. — 1974. — Т. XLIII, № 4. — С. 727—743. Архивировано 5 июля 2020 года.
- ↑ Владимир Королев. Химики впервые полностью синтезировали мощнейший «лягушачий токсин» . nplus1.ru. Дата обращения: 28 ноября 2019. Архивировано 28 ноября 2019 года.
- ↑ Под ред. Грачёвой И. М. Теоретические основы биотехнологии. Биохимические основы синтеза биологический активных веществ // М.: Элевар, 2003 — 554 с., илл. (С. 292-293). ISBN 5-89311-004-8.
- ↑ 1 2 Филимонова В. В., Тарабрин В. В. Производство витамина B12 // Молодой учёный : международный научный журнал / под ред. И. Г. Ахметова. — 2017. — 30 апреля (№ 17 (151)). — С. 9. — ISSN 2072-0297. Архивировано 3 февраля 2021 года.
- ↑ Рудакова И.П, Авакумов В.М. Цианокобаламин // Большая Медицинская Энциклопедия / под ред. Б.В. Петровского. — 3-е изд. — Т. 27. Архивировано 5 августа 2020 года.
- ↑ 1 2 Коневалова Н.Ю. Биохимия / под ред. Н.Ю. Коневаловой. — 4-е изд. — Витебск: ВГМУ, 2017. — С. 363—366. — 690 с. Архивировано 19 марта 2022 года.
- ↑ Хапалюк А.В. ВИТАМИН В12: БИОЛОГИЧЕСКОЕ ЗНАЧЕНИЕ, ПАТОГЕНЕТИЧЕСКИЕ МЕХАНИЗМЫ И КЛИНИЧЕСКИЕ ПРОЯВЛЕНИЯ ВИТАМИННОЙ НЕДОСТАТОЧНОСТИ. — Минск: БГМУ, 2019. Архивировано 19 марта 2022 года.
- ↑ I Chanarin. Cobalamins and nitrous oxide: a review. // Journal of Clinical Pathology. — 1980-10. — Т. 33, вып. 10. — С. 909—916. — ISSN 0021-9746.
- ↑ 1 2 R. B. Layzer. Myeloneuropathy after prolonged exposure to nitrous oxide // The Lancet. — Elsevier, 1978-12-09. — Т. 2, вып. 8102. — С. 1227—1230. — ISSN 0140-6736. Архивировано 14 апреля 2019 года.
- ↑ Алексеев Г. А. Пернициозная анемия / Г. А. Алексеев, М. П. Хохлова, H. Г. Шумецкий // Большая медицинская энциклопедия : в 30 т. / гл. ред. Б. В. Петровский. — 3-е изд. — М. : Советская энциклопедия, 1982. — Т. 19 : Перельман — Пневмопатия. — 536 с. : ил.
- ↑ Рудакова И. П. Цианокобаламин / И. П. Рудакова, В. М. Авакумов // Большая медицинская энциклопедия : в 30 т. / гл. ред. Б. В. Петровский. — 3-е изд. — М. : Советская энциклопедия, 1986. — Т. 27 : Хлоракон — Экономика здравоохранения. — 576 с. : ил.
- ↑ CerefolinNAC® Caplets . intetlab.com. Дата обращения: 23 ноября 2019. Архивировано 20 сентября 2018 года.
- ↑ 1 2 Мороз А. Витамины группы В. — В: Боли в спине: мифы и реальность : [арх. 20 апреля 2020] / Анна Мороз // Медфронт. — 2020. — 3 апреля.
- ↑ Azize Esra Gürsoy, Mehmet Kolukısa, Gülsen Babacan-Yıldız, Arif Çelebi. Subacute Combined Degeneration of the Spinal Cord due to Different Etiologies and Improvement of MRI Findings (англ.) // Case Reports in Neurological Medicine. — 2013. — 03 27 (vol. 2013). — ISSN 2090-6668. — doi:10.1155/2013/159649. — PMID 23607009. Архивировано 12 ноября 2020 года.
- ↑ Watanabe, 2007, Requirements of Vitamin B12 and Vitamin B12 Deficiency, p. 1270.
- ↑ 1 2 3 Wolfgang Herrmann, Rima Obeid. Causes and Early Diagnosis of Vitamin B12 Deficiency // Deutsches Ärzteblatt international. — 2008-10-03. — ISSN 1866-0452. — doi:10.3238/arztebl.2008.0680.
- ↑ NIH Intramural Sequencing Center Group, Jennifer L Sloan, Jennifer J Johnston, Irini Manoli, Randy J Chandler, Caitlin Krause, Nuria Carrillo-Carrasco, Suma D Chandrasekaran, Justin R Sysol, Kevin O'Brien, Natalie S Hauser, Julie C Sapp, Heidi M Dorward, Marjan Huizing, Bruce A Barshop, Susan A Berry, Philip M James, Neena L Champaigne, Pascale de Lonlay, Vassilli Valayannopoulos, Michael D Geschwind, Dimitar K Gavrilov, William L Nyhan, Leslie G Biesecker, Charles P Venditti. Exome sequencing identifies ACSF3 as a cause of combined malonic and methylmalonic aciduria (англ.) // Nature Genetics. — 2011-09. — Vol. 43, iss. 9. — P. 883–886. — ISSN 1546-1718 1061-4036, 1546-1718. — doi:10.1038/ng.908. Архивировано 21 сентября 2022 года.
- ↑ Monique G. M. de Sain-van der Velden, Maria van der Ham, Judith J. Jans, Gepke Visser, Hubertus C. M. T. Prinsen, Nanda M. Verhoeven-Duif, Koen L. I. van Gassen, Peter M. van Hasselt. A New Approach for Fast Metabolic Diagnostics in CMAMMA // JIMD Reports, Volume 30 / Eva Morava, Matthias Baumgartner, Marc Patterson, Shamima Rahman, Johannes Zschocke, Verena Peters. — Berlin, Heidelberg: Springer Berlin Heidelberg, 2016. — Т. 30. — С. 15–22. — ISBN 978-3-662-53680-3, 978-3-662-53681-0. — doi:10.1007/8904_2016_531. Архивировано 22 сентября 2022 года.
- ↑ 1 2 3 4 5 Food Sources of Vitamin B12 (англ.). www.dietitians.ca. Dietitians of Canada[англ.] (2017). Дата обращения: 13 октября 2019. Архивировано из оригинала 13 октября 2019 года.
- ↑ 1 2 3 Rowley, Kendall, 2019, How do mammals acquire cobalamin?.
- ↑ Rowley, Kendall, 2019, Do humans compete with bacteria for cobalamin?.
- ↑ Rowley, Kendall, 2019, Fig 1. Cobalamin in the healthy human intestinal tract..
- ↑ 1 2 3 4 Watanabe, Bito, 2018, Vitamin B12 in animal-derived foods, p. 149.
- ↑ Watanabe, Bito, 2018, Vitamin B12 in animal-derived foods, Fish and shellfish, p. 151—153.
- ↑ Watanabe, 2007, Vitamin B12 in Animal Food : Fish, p. 1268—1269.
- ↑ Watanabe, Bito, 2018, Vitamin B12 in animal-derived foods : Meat, p. 149—150.
- ↑ 1 2 Watanabe, 2007, Abstract, p. 1266.
- ↑ 1 2 Watanabe, Bito, 2018, Conclusion, p. 155.
- ↑ 1 2 Watanabe, Bito, 2018, Vitamin B12 in plant-derived food, p. 153.
- ↑ Watanabe, 2007, Vitamin B12 in Plant Food : Vegetables, p. 1269.
- ↑ Watanabe, Bito, 2018, Vitamin B12 in plant-derived food : B12-enriched vegetables, p. 153.
- ↑ Watanabe, 2007, Vitamin B12 in Plant Food : Soybean, p. 1269—1270.
- ↑ Watanabe, Bito, 2018, Vitamin B12 in plant-derived food : Mushroom, p. 153—154.
- ↑ Watanabe, 2007, Vitamin B12 in Plant Food : Vitamin B12–Fortified Cereals, p. 1270.
- ↑ Healthdirect Australia. Foods high in vitamin B12 (англ.). www.healthdirect.gov.au (30 сентября 2019). Дата обращения: 12 октября 2019. Архивировано 12 октября 2019 года.
- ↑ What every vegan should know about vitamin B12 Архивная копия от 22 мая 2014 на Wayback Machine (англ.)
- ↑ Vitamin B12 (англ.). National Institutes of Health (NIH). Дата обращения: 29 мая 2023. Архивировано 11 июля 2022 года.
- ↑ 1 2 Watanabe, 2007, Requirements of Vitamin B12 and Vitamin B12 Deficiency, p. 1267.
- ↑ Office of Dietary Supplements - Vitamin B12. Fact Sheet for Health Professionals (англ.). National Institutes of Health. ods.od.nih.gov. Дата обращения: 18 июня 2019. Архивировано 30 ноября 2019 года.
- ↑ Theodore M. Brasky, Emily White, Chi-Ling Chen Long-Term, Supplemental, One-Carbon Metabolism–Related Vitamin B Use in Relation to Lung Cancer Risk in the Vitamins and Lifestyle (VITAL) Cohort Архивная копия от 7 февраля 2021 на Wayback Machine / Статья в «Journal of Clinical Oncology» Vol. 35, № 30, October 20, 2017, стр. 3440–3448 // American Society of Clinical Oncology, 2318 Mill Road, Suite 800, Alexandria, VA 22314
- ↑ Pseudovitamin B12 Is the Predominant Cobamide of an Algal Health Food, Spirulina Tablets . Дата обращения: 16 сентября 2010. Архивировано 8 мая 2016 года.
- ↑ 1 2 Is Vitamin B12 Available from Spirulina or Intestinal Synthesis? Дата обращения: 16 сентября 2010. Архивировано 21 сентября 2010 года.
Литература
[править | править код]- Fumio Watanabe, Tomohiro Bito. Vitamin B12 sources and microbial interaction : [англ.] // Experimental Biology and Medicine (Maywood, N.J.). — 2018. — Vol. 243, no. 2 (January). — P. 148–158. — ISSN 1535-3699. — doi:10.1177/1535370217746612. — PMID 29216732. — PMC 5788147.
- Fumio Watanabe. Vitamin B12 sources and bioavailability : [англ.] // Experimental Biology and Medicine (Maywood, N.J.). — 2007. — Vol. 232, no. 10 (November). — P. 1266–1274. — ISSN 1535-3702. — doi:10.3181/0703-MR-67. — PMID 17959839.
- Carol A. Rowley, Melissa M. Kendall. To B12 or not to B12: Five questions on the role of cobalamin in host-microbial interactions (англ.) // PLoS pathogens. — 2019. — January (vol. 15). — ISSN 1553-7374. — doi:10.1371/journal.ppat.1007479. — PMID 30605490. — PMC 6317780.
- ГОСТ Р 57201-2016 «Витамин В12 кормовой. Технические условия». // М.: Стандартинформ, 2016 г.