Частичный предел последовательности

Материал из Википедии — свободной энциклопедии
Перейти к: навигация, поиск
Верхний предел (lim sup) и нижний предел (lim inf) последовательности.

Частичный предел некоторой последовательности — это предел одной из её подпоследовательностей, если только он существует. Для сходящихся числовых последовательностей частичный предел совпадает с обычным пределом в силу единственности последнего, однако в самом общем случае у произвольной последовательности может быть от нуля до бесконечного числа различных частичных пределов. При этом, если обычный предел характеризует точку, к которой элементы последовательности приближаются с ростом номера, то частичные пределы характеризуют точки, вблизи которых лежит бесконечно много элементов последовательности.

Два важных частных случая частичного предела — верхний и нижний пределы.

Определения[править | править вики-текст]

Частичным пределом последовательности называется предел какой-либо её подпоследовательности, если существует хотя бы одна подпоследовательность, имеющая предел. В противном случае, говорят, что у последовательности нет частичных пределов. В некоторой литературе в случаях, если из последовательности удаётся выделить бесконечно большую подпоследовательность, все элементы которой одновременно положительны или отрицательны, её частичным пределом называют соответственно или .

Нижний предел последовательности — это точная нижняя грань множества частичных пределов последовательности.

Верхний предел последовательности — это точная верхняя грань множества частичных пределов последовательности.

Иногда нижним пределом последовательности называют наименьшую из её предельных точек, а верхним — наибольшую.[1] Очевидно, что эти определения эквивалентны.

Обозначения[править | править вики-текст]

Нижний предел последовательности :

  • (в отечественной литературе);


  • (в иностранной литературе).

Верхний предел последовательности :

  • (в отечественной литературе);


  • (в иностранной литературе).

Примеры[править | править вики-текст]




  • (в другой терминологии оба предела равны )

Свойства[править | править вики-текст]

  • Частичным пределом последовательности может быть только её предельная точка, и, наоборот, любая предельная точка последовательности представляет собой некоторый её частичный предел. Иными словами, понятия «частичный предел последовательности» и «предельная точка последовательности» эквивалентны.
  • У любой ограниченной последовательности существуют и верхний, и нижний пределы (в множестве вещественных чисел). Если же считать и допустимыми значениями частичного предела, то верхний и нижний пределы существуют вообще у любой числовой последовательности.
  • Числовая последовательность сходится к тогда и только тогда, когда .
  • Для любого наперёд взятого положительного числа все элементы ограниченной числовой последовательности , начиная с некоторого номера, зависящего от , лежат внутри интервала .
  • Если за пределами интервала лежит лишь конечное число элементов ограниченной числовой последовательности , то интервал содержится в интервале .

Примечания[править | править вики-текст]

  1. В. А. Ильин, В. А. Садовничий, Бл. Х. Сендов. Глава 3. Теория пределов // Математический анализ / Под ред. А. Н. Тихонова. — 3-е изд., перераб. и доп. — М.: Проспект, 2006. — Т. 1. — С. 92 — 105. — 672 с. — ISBN 5-482-00445-7.