Число Дотти

Материал из Википедии — свободной энциклопедии
Перейти к навигации Перейти к поиску
Число Дотти является единственной неподвижной точкой функции косинуса.

Число́ До́тти — постоянная, определяемая как вещественное решение уравнения

где аргумент измеряется в радианах. В десятичном представлении число Дотти примерно равно .[1]

Из теоремы о промежуточном значении следует, что указанное уравнение должно иметь хотя бы одно решение. Производная функции равна и почти везде положительна, а значит, сама функция монотонно возрастает и не может иметь нескольких нулей. Таким образом, уравнение однозначно определяет рассматриваемую константу.

Значения тригонометрических функций[править | править код]

Пусть — число Дотти. Тогда:

Свойства[править | править код]

Число Дотти является нетривиальной притягивающей неподвижной точкой функции косинуса на сколь угодно большой своей действительной (но не комплексной) окрестности. Иначе говоря, для любого действительного число равно константе Дотти. Уравнение для комплексного имеет, кроме неё, бесконечное количество решений, однако ни одно из них не является притягивающей неподвижной точкой.

Кроме того, число Дотти трансцендентно, что можно доказать при помощи теоремы Линдемана — Вейерштрасса.[2]

С использованием теоремы Лагранжа об обращении рядов было доказано, что число Дотти представимо в виде ряда , где для любого нечётного является рациональным числом, определённым следующим образом:

Первые несколько членов последовательности равны [3][4][5][nb 1]

Происхождение названия[править | править код]

Имя данной константе было дано Самюэлем Капланом в честь преподавательницы французского по имени Дотти, которая обнаружила её, нажимая раз за разом кнопку взятия косинуса на калькуляторе, и рассказала об этом своему мужу — учителю математики.[3]

Сноски[править | править код]

  1. Каплан не приводит явного выражения для членов ряда, однако оно мгновенно следует из теоремы Лагранжа об обращении рядов.

Примечания[править | править код]

  1. OEIS A003957. oeis.org. Дата обращения: 26 мая 2019.
  2. Eric W. Weisstein. Dottie Number.
  3. 1 2 Kaplan, Samuel R. The Dottie Number (англ.) // Mathematics Magazine : magazine. — 2007. — February (vol. 80). — P. 73.
  4. OEIS A302977 Numerators of the rational factor of Kaplan's series for the Dottie number.. oeis.org. Дата обращения: 26 мая 2019.
  5. A306254 - OEIS. oeis.org. Дата обращения: 22 июля 2019.

Ссылки[править | править код]