Чугун

Материал из Википедии — свободной энциклопедии
Перейти к: навигация, поиск
Чугун
Фазы железоуглеродистых сплавов

Феррит (твёрдый раствор внедрения C в α-железе с объемно-центрированной кубической решеткой)
Аустенит (твёрдый раствор внедрения C в γ-железе с гранецентрированной кубической решеткой)
Цементит (карбид железа; Fe3C метастабильная высокоуглеродистая фаза)
Графит стабильная высокоуглеродистая фаза

Структуры железоуглеродистых сплавов

Ледебурит (эвтектическая смесь кристаллов цементита и аустенита, превращающегося при охлаждении в перлит)
Мартенсит (сильно пересыщенный твёрдый раствор углерода в α-железе с объемно-центрированной тетрагональной решеткой)
Перлит (эвтектоидная смесь, состоящая из тонких чередующихся пластинок феррита и цементита)
Сорбит (дисперсный перлит)
Троостит (высокодисперсный перлит)
Бейнит (устар: игольчатый троостит) — ультрадисперсная смесь кристаллов низкоуглеродистого мартенсита и карбидов железа

Стали

Конструкционная сталь (до 0,8 % C)
Инструментальная сталь (до ~2 % C)
Нержавеющая сталь (легированная хромом)
Жаростойкая сталь
Жаропрочная сталь
Высокопрочная сталь

Чугуны

Белый чугун (хрупкий, содержит ледебурит и не содержит графит)
Серый чугун (графит в форме пластин)
Ковкий чугун (графит в хлопьях)
Высокопрочный чугун (графит в форме сфероидов)
Половинчатый чугун (содержит и графит, и ледебурит)

Крышка канализационного люка, изготовлена из чугуна

Чугу́н — сплав железа с углеродом (и другими элементами). Содержание углерода в чугуне не менее 2,14 % (точка предельной растворимости углерода в аустените на диаграмме состояний), сплавы с содержанием углерода менее 2,14 % называются сталью. Углерод придаёт сплавам железа твёрдость, снижая пластичность и вязкость. Углерод в чугуне может содержаться в виде цементита и графита. В зависимости от формы графита и количества цементита, выделяют белый, серый, ковкий и высокопрочный чугуны. Чугуны содержат постоянные примеси (Si, Mn, S, P), а в некоторых случаях также легирующие элементы (Cr, Ni, V, Al и другие). Как правило, чугун хрупок.

Температура плавления чугуна — от 1150 до 1200 °C (от 2100 до 2190 °F), то есть примерно на 300 °C (572 °F) ниже, чем у чистого железа.

Этимология[править | править вики-текст]

В русском языке слово чугун имеет китайское происхождение, связанное с иероглифами лить и дело[1]. Это связано с тем, что чугун представлял собой железный сплав низкой плавки. В финском языке чугун обозначается словом Valurauta, которое имеет два корня и переводится как литое железо (rauta).

История[править | править вики-текст]

Технологию литья чугуна освоили в Китае, откуда этот термин (через татаро-монгольское посредничество) попал Россию[1]. В X веке в Китае появляются чугунные монеты, однако в широком применении вплоть до XIX веке оставались бронзовые монеты[2]. В XI веке был возведен чугунный шпиль пагоды Линсяо. XIV веком датируют находки чугунных котлов Золотой Орды (Тульская область)[3], однако на территории Монголии (Каракорум) монголы умели изготовлять чугунные котлы еще в XIII веке[4].

В 1339 году (в годы Столетней войны) при обороне французского города Камбре уже использовались чугунные пушки наряду с бронзовыми. В 1403 году в Китае (Пекин) был отлит чугунный колокол[5]. C 1411 года англичане начинают вооружать чугунными пушками свои корабли[6]. В том же XV веке во Фландрии начинают лить чугунные ядра, которые вытесняют каменные[7]. В XVI веке в России (при Иване Грозном) из чугуна начали изготавливаться пушки[8]. Ввиду отсутствия у чугуна такого свойства как ковкость, его широкое производство стало возможным благодаря внедрению технологии доменной печи. Чугунные пушки появились у маньчжуров лишь в 1631 году[9], но в Китае они были известны со времени династии Мин[10].

В 1701 году Каменский чугунолитейный завод на Урале (Россия) производит первую партию чугуна (262 кг). На Урале чугунное литье превратилось в народный промысел (Каслинское литьё). В XVIII веке в Англии появился первый чугунный мост (в России чугунный мост появился лишь в начале XIX века). Это стало возможным благодаря технологии Вилкинсона. В том же веке из чугуна начали изготавливать рельсы[11] (Чугунный колесопровод). Помимо промышленного использования продолжал чугун использоваться и в быту. В XVIII веке появились чугунки, которые широко стали использоваться в русской печи[12].

В 1806 году Великобритания выплавляла 250 тыс. тон чугуна, занимая 1-е место в мире по его производству, а к середине XIX века в Великобритании была сосредоточена половина мирового чугунного производства. Однако в 1890 году 1-е место по производству чугуна заняли США[13]. Технология бессмеровского процесса (1856) и мартеновской печи (1864) впервые позволила получать сталь из чугуна. В XIX веке чугун широко используется для изготовления викторианских каминов[14], а также декоративных элементов (например, чугунная решетка памятника Александра II, 1890). Также в XIX веке из чугуна изготавливались водопроводные и канализационные 12-дюймовые трубы Лондона[15]. Однако с появлением нарезного оружия (Пушка Армстронга, 1854) сталь вновь начинает вытеснять чугун.

Объёмы производства[править | править вики-текст]

Мировое производство чугуна в 2015 году составило 898,261 млн тонн, что на 3,2 % ниже, чем в 2008 году (927,123 млн т)[16]. Мировая топ-десятка стран-производителей чугуна выглядит следующим образом:

1 Китай 543,748 млн т
2 Япония 66,943 млн т
3 Россия 43,945 млн т
4 Индия 29,646 млн т
5 Южная Корея 27,278 млн т
6 Украина 25,676 млн т
7 Бразилия 25,267 млн т
8 Германия 20,154 млн т
9 США 18,936 млн т
10 Франция 8,105 млн т

За четыре месяца 2010 года мировой выпуск чугуна составил 346,15 млн тонн. Этот результат на 28,51 % больше по сравнению с аналогичным периодом 2009 года.[17]

Виды чугуна[править | править вики-текст]

Белый чугун[править | править вики-текст]

В белых чугунах весь углерод находится в связанном виде (Fe3C). В зависимости от количества углерода делятся на:

  • эвтектические (4,3 % углерода);
  • заэвтектические (4,3—6,67 % углерода).

Цементит в изломе — светлый, поэтому такие чугуны назвали светлыми.

Белые чугуны применяются в основном для изготовления ковких чугунов, которые получают путём отжига.

Серый чугун[править | править вики-текст]

Серый чугун — это сплав железа, кремния (от 1,2—3,5 %) и углерода, содержащий также постоянные примеси Mn, P, S. В структуре таких чугунов большая часть или весь углерод находится в виде графита пластинчатой формы. Излом такого чугуна из-за наличия графита имеет серый цвет.

Ковкий чугун[править | править вики-текст]

Ковкий чугун получают длительным отжигом белого чугуна, в результате которого образуется графит хлопьевидной формы. Металлическая основа такого чугуна — феррит и реже перлит. Ковкий чугун получил своё название из-за повышенной пластичности и вязкости (хотя обработке давлением не подвергается). Ковкий чугун обладает повышенной прочностью при растяжении и высоким сопротивлением удару. Из ковкого чугуна изготавливают детали сложной формы: картеры заднего моста автомобилей, тормозные колодки, тройники, угольники и т. д.

Маркируется ковкий чугун двумя буквами и двумя числами, например КЧ 370-12. Буквы КЧ означают ковкий чугун, первое число — предел прочности (в МПа) на разрыв, второе число — относительное удлинение (в процентах), характеризующее пластичность чугуна.

Высокопрочный чугун[править | править вики-текст]

Высокопрочный чугун имеет в своей структуре шаровидный графит, который образуется в процессе кристаллизации. Шаровидный графит ослабляет металлическую основу не так сильно, как пластинчатый, и не является концентратором напряжений.

Лазерное упрочнение чугуна[править | править вики-текст]

Лазерные методы обработки материалов и покрытий относятся к новым перспективным технологиям, широкое внедрение в производство которых датируется началом 1980-х годов. Однако несмотря на то, что проведено достаточное количество исследований, способ лазерного упрочнения недостаточно изучен для конкретных материалов и условий изготовления деталей машин, особенно в области судостроения и автомобилестроения.

Лазерное облучение вызывает оплавление поверхности высокопрочного чугуна ВЧ60-2 при превышении критической мощности Wp = 30—32 Вт/мм². При лазерной обработке без оплавления поверхности установлена линейная зависимость между густотой энергии и глубиной закалённой зоны. При оплавлении с возрастанием густоты энергии наблюдается более интенсивное (чем при обработке без оплавления) увеличение глубины зоны лазерного взаимодействия при наличии значительного разброса в размерах закалённых зон, что обусловливается эффектом плавления вокруг графитовых включений.

Классификация[править | править вики-текст]

В зависимости от содержания углерода серый чугун называется доэвтектическим (2,14—4,3 % углерода), эвтектическим (4,3 %) или заэвтектическим (4,3—6,67 %). Состав сплава влияет на структуру материала.

В зависимости от состояния и содержания углерода в чугуне различают: белые и серые (по цвету излома, который обуславливается структурой углерода в чугуне в виде карбида железа или свободного графита), высокопрочные с шаровидным графитом, ковкие чугуны, чугуны с вермикулярным графитом. В белом чугуне углерод присутствует в виде цементита, в сером — в основном в виде графита.

В промышленности разновидности чугуна маркируются следующим образом:

  • передельный чугун — П1, П2;
  • передельный чугун для отливок (передельно-литейный) — ПЛ1, ПЛ2;
  • передельный фосфористый чугун — ПФ1, ПФ2, ПФ3;
  • передельный высококачественный чугун — ПВК1, ПВК2, ПВК3;
  • чугун с пластинчатым графитом — СЧ (цифры после букв «СЧ», обозначают величину временного сопротивления разрыву в кгс/мм).

Антифрикционный чугун:

  • антифрикционный серый — АЧС;
  • антифрикционный высокопрочный — АЧВ;
  • антифрикционный ковкий — АЧК;
  • чугун с шаровидным графитом для отливок — ВЧ (цифры после букв «ВЧ» означают временное сопротивление разрыву в кгс/мм и относительное удлинение (%);
  • чугун легированный со специальными свойствами — Ч.

Примеры изделий из чугуна[править | править вики-текст]

Чугун в искусстве[править | править вики-текст]

См. также[править | править вики-текст]

Примечания[править | править вики-текст]

Литература[править | править вики-текст]

  • Ю. М. Лахтин, В. П. Леонтьева. Материаловедение. — М.: Машиностроение, 1990. — 528 с.
  • Physics and chemistry of solid state, № 4, 2014, vol. 15.