Чётность функции

Материал из Википедии — свободной энциклопедии
(перенаправлено с «Чётные и нечётные функции»)
Перейти к навигации Перейти к поиску

Нечётными и чётными называются функции, обладающие симметрией относительно изменения знака аргумента. Это понятие важно во многих областях математического анализа, таких как теория степенных рядов и рядов Фурье. Название связано со свойствами степенных функций: функция чётна, когда чётно, и нечётна, когда нечётно.

 — пример нечётной функции
 — пример чётной функции
нечётная
ни чётная, ни нечётная
  • Нечётная функция — функция, меняющая значение на противоположное при изменении знака независимой переменной (график её симметричен относительно центра координат).
  • Чётная функция — функция, не изменяющая своего значения при изменении знака независимой переменной (график её симметричен относительно оси ординат).
  • Ни чётная, ни нечётная функция (функция общего вида). В эту категорию относят функции, не подпадающие под предыдущие 2 категории.

Строгое определение[править | править код]

Определения вводятся для любой симметричной относительно нуля области определения , например, отрезка или интервала.

  • Функция называется чётной, если справедливо равенство
  • Функция называется нечётной, если справедливо равенство
  • Функции, не принадлежащие ни одной из категорий выше, называются ни чётными, ни нечётными (или функциями общего вида).

Свойства[править | править код]

  • График нечётной функции симметричен относительно начала координат .
  • График чётной функции симметричен относительно оси ординат .
  • Произвольная функция может быть единственным образом представлена в виде суммы нечётной и чётной функций:
где
  • Функция  — единственная функция, одновременно являющаяся нечётной и чётной.
  • Сумма, разность и вообще любая линейная комбинация чётных функций чётна, а нечётных — нечётна. Поэтому чётные функции образуют линейное векторное пространство над полем действительных чисел, это же справедливо и для нечётных функций.
  • Произведение двух функций одной чётности чётно.
  • Произведение двух функций разной чётности нечётно.
  • Композиция двух нечётных функций нечётна.
  • Композиция чётной функции с нечётной чётна.
  • Композиция любой функции с чётной чётна (но не наоборот).
  • Производная чётной функции нечётна, а нечётной — чётна.
  • Для определённых интегралов от чётных функций выполняется равенство
Соответственно, для определённых интегралов от нечётных функций выполняется равенство
и от нечётных функций:
(v. p. обозначает главное значение несобственного интеграла по Коши).
  • Разложение в ряд Маклорена чётной функции содержит только члены с чётными степенями, а нечётной — только с нечётными.
  • Разложение в ряд Фурье периодической чётной функции содержит только члены с косинусами, а периодической нечётной — только с синусами.
  • Чётные функции образуют коммутативную алгебру над полем действительных чисел. Однако это неверно для нечётных функций, поскольку их множество незамкнуто относительно умножения (произведение двух нечётных функций является чётной функцией).

Примеры[править | править код]

Ниже везде

Нечётные функции[править | править код]

Чётные функции[править | править код]

Литература[править | править код]