Эта статья входит в число добротных статей

Эксперимент Паунда и Ребки

Материал из Википедии — свободной энциклопедии
Перейти к: навигация, поиск

Экспериме́нт Па́унда и Ре́бки — проверка замедления хода времени в поле тяготения (экспериментальное подтверждение существования гравитационного красного смещения), предложенная в 1959[1] и осуществлённая в 1959—1960 годах[2] сотрудником Гарвардского университета Робертом Паундом и его аспирантом Гленом Ребкой в лабораторном контролируемом эксперименте. Полученное значение в пределах ошибок эксперимента (10 %) блестяще подтвердило принцип эквивалентности и основанную на нём общую теорию относительности Эйнштейна. Позже (в 1964 году) в подобном эксперименте Паунд и Снайдер получили совпадение измеренного и теоретического значений с точностью около 1 %[3]. В 1980 году точность проверки релятивистских предсказаний гравитационного красного смещения была улучшена до 0,007 % в экспериментах Gravity Probe A с водородным мазером в космосе[4].

Предпосылки эксперимента[править | править вики-текст]

Ещё в 1916 году Эйнштейн предложил[5] три варианта экспериментальной проверки своей общей теории относительности (они известны как классические тесты ОТО):

Первый эффект был обнаружен ещё в 1859 году и оставался необъяснённым до появления ОТО. Второй эффект был подтверждён наблюдениями Эддингтона во время солнечного затмения в 1919 году[6], которые стали решающими для признания теории Эйнштейна не только в сообществе физиков, но и в массовой культуре. Однако третий классический тест ввиду крайней малости ожидаемого эффекта замедления времени в слабом гравитационном поле Земли (и даже Солнца) не мог быть надёжно проверен до тех пор, пока экспериментальная техника не достигла должной чувствительности. Ранние попытки включали в себя измерения красного смещения спектральных линий Солнца и белых карликов, однако потому, что смещение типично значительно меньше полной ширины таких линий и может вызываться и другими причинами (в случае Солнца основной причиной является крупномасштабная конвекция в солнечных ячейках), интерпретации экспериментов оставались противоречивыми[7]. В результате этот аспект теории дожидался надёжной проверки более сорока лет.

Описание эксперимента[править | править вики-текст]

Джефферсоновская физическая лаборатория в Гарвардском университете. Эксперимент был выполнен в башне левого крыла, которая частично скрыта чердаком, надстроенным позднее

Для определения разности темпа хода времени в разнесённых по высоте точках Паунд и Ребка использовали измерения частоты фотонов в двух точках вдоль их траектории: в точке испускания и в точке поглощения. Разность в измеренной частоте в верхней и нижней точках указывает на разность хода времени в этих точках. Гамма-квант с энергией 14,4 кэВ, испускаемый возбуждённым ядром 57Fe в переходе на основное состояние, проходил расстояние h = 22,5 м по вертикали в поле тяготения Земли и резонансно поглощался мишенью из того же материала. При точном совпадении частот фотона в точке испускания и поглощения и отсутствии отдачи испускающего и поглощающего ядер вероятность поглощения максимальна (источник и поглотитель настроены в резонанс); при расхождении частоты фотона и поглотителя вероятность поглощения уменьшается, в зависимости от разности частот и «остроты» резонанса (то есть ширины линии поглощения). Эта схема эквивалентна радиопередатчику и радиоприёмнику, настроенным на одну частоту; согласно ОТО, когда приёмник переносится вниз, в точку с большим гравитационным потенциалом, частота, на которую он настроен, уменьшается с точки зрения наблюдателя, оставшегося возле передатчика, как замедляются и любые другие процессы, и в результате приёмник и передатчик выходят из резонанса — электромагнитное излучение передатчика перестаёт поглощаться приёмником. Однако эффект в слабом гравитационном поле Земли очень мал, поэтому его обнаружение наталкивается на существенные экспериментальные трудности. В первую очередь, даже при излучении и поглощении в одной точке (т.е. даже в отсутствие гравитационного красного смещения) будет наблюдаться существенный доплеровский сдвиг частот между излучающим и поглощающим атомами ввиду того, что оба атома получают импульс отдачи от фотона. Этот доплеровский сдвиг отдачи для одиночного атома железа-57 на пять порядков больше ожидаемого эффекта. Поэтому в эксперименте использовался открытый всего за два года до его проведения эффект Мёссбауэра, который обеспечивает поглощение импульса отдачи при испускании и поглощении фотона не отдельным ядром атома, а всем кристаллом (точнее, его макроскопической частью), так что энергия фотона при излучении практически не тратится на отдачу. Согласно принципу эквивалентности, относительное изменение частоты света \frac{\delta\nu}{\nu} для фотона, испущенного в точке с гравитационным потенциалом \varphi_{1} и поглощённого в точке с гравитационным потенциалом \varphi_{2}, равно \frac{\delta\nu}{\nu}=\frac{\varphi_{2}-\varphi_{1}}{c^2}. В условиях эксперимента относительное изменение частоты света согласно общей теории относительности должно составлять

\frac{\delta\nu}{\nu} =-\frac{gh}{c^2}=-2,46 \times 10^{-15},

где g — ускорение свободного падения,

h = 22,5 м — расстояние (высота излучателя относительно поглотителя),
c — скорость света[8].

Абсолютный сдвиг энергии для гамма-квантов железа-57 с энергией E = 14,4 кэВ составлял при этом всего 3,54·10−11 эВ[8].

Точности имеющейся у Паунда и Ребки аппаратуры не хватало для таких измерений. Даже естественная ширина самого́ распадающегося уровня Γ = ħ = 4,6·10−9 эВ, обусловленная его конечным временем жизни (τ = 142 нс)[9], была на два порядка больше, чем ожидавшийся эффект. Тогда исследователи придумали остроумный приём для повышения точности измерений сдвига частоты: они догадались двигать источник фотонов вверх и вниз со скоростью v_{0}\cos \omega t, где \omega было некоторой постоянной частотой, несколько десятков герц, а v_0 было подобрано так, чтобы доплеровский сдвиг частоты от него намного превышал предполагаемый гравитационный сдвиг частот. Гравитационное красное смещение, вызванное различием гравитационного замедления времени в точках излучения и приёма, добавляется к доплеровскому смещению и гравитационный относительный сдвиг частоты можно оценить по изменениям легко регистрируемого доплеровского смещения[10]. Источником была железная фольга толщиной 15 мкм с внедрённым в неё кобальтом-57 активностью около 0,4 Ки, при распаде которого путём электронного захватапериодом полураспада 272 дня) возникало железо-57 в возбуждённом состоянии с энергией 14,4 кэВ[8]. В эксперименте источник был помещён на подвижный элемент пьезодинамика, на который подавался синусоидальный сигнал звуковой частоты 50 Гц. Данные снимались в течение каждой четверти периода (5 мс) вокруг момента максимальной скорости источника. Кроме того, источник вместе с пьезодинамиком был помещён на гидравлическом поршне, который обеспечивал поступательное равномерное перемещение источника к поглотителю (или от него) со скоростью около 6·10−4 см/с; это устройство позволяло по известному сигналу (доплеровскому красному или синему смещению от постоянной скорости источника) откалибровать полученный спектр[8]. Между источником и поглотителем располагалась труба диаметром 40 см из пластиковой плёнки, наполненная гелием под атмосферным давлением, для устранения поглощения гамма-квантов в воздухе. Железо-57 как мёссбауэровский изотоп было выбрано благодаря тому, что с ним можно работать при комнатной температуре (в отличие, например, от цинка-67, с которым приходилось работать при температуре жидкого гелия), а также благодаря большому периоду полураспада источника (57Co) и высокой интенсивности гамма-линии[1].

Детектором гамма-квантов служила сборка из семи сцинтилляторов NaI толщиной 7 мм, установленных на фотоэлектронных умножителях. На сцинтилляторы сверху устанавливались поглотители — семь бериллиевых дисков толщиной 1 см, на которые гальванически была нанесена плёнка из железа, обогащённого железом-57 до 32 %[1][8].

Вначале Паунд и Ребка получили значение относительного сдвига частоты гамма-квантов в 4 раза больше ожидаемого. Это различие объяснялось разностью температур источника и мишени, что было указано Джозефсоном. Тепловое движение атома-источника (как и атома-поглотителя) за счёт классического эффекта Доплера в среднем не сдвигает линии излучения и поглощения, приводя лишь к их уширению, поскольку в классический доплеровский сдвиг даёт вклад лишь проекция скорости излучателя (приёмника) на направление распространения фотона, а эта проекция в среднем равна нулю. Однако спецрелятивистское замедление времени (релятивистский эффект Доплера) зависит не от направления скорости источника (приёмника), а лишь от её абсолютной величины, поэтому в среднем не обнуляется. В результате теплового движения релятивистский эффект Доплера при разности температур источника и поглотителя в 1 °C даёт относительный сдвиг частот \frac{\left \langle v^2 \right \rangle}{2c^2} около 2,20·10−15, почти равный ожидаемому общерелятивистскому эффекту. Исследователям пришлось измерять эти температуры и учитывать их разность. Лишь после этого был получен окончательный результат для гравитационного смещения частоты: \frac{\delta\nu}{\nu}=-(2,57 \pm 0,26)\times 10^{-15}, в пределах ошибок измерения совпадавший с теоретическим предсказанием ОТО[1].

Дальнейшие эксперименты[править | править вики-текст]

В 1964 году Паунд (совместно со Снайдером) улучшил точность эксперимента на порядок, получив совпадение измеренного и теоретического значений с точностью около 1 %[3].

В 1976 году группой физиков Смитсоновского института под руководством Роберта Вессо[4] был проведён эксперимент Gravity Probe A по измерению гравитационного смещения частот между двумя водородными мазерами, одним наземным и другим, установленным на суборбитальной ракете Scout, запущенной на высоту 10 273 км. Предварительная обработка результатов дала погрешность 0,007 % от теоретического значения[4]. На 2014 год этот эксперимент пока остаётся наиболее точным среди экспериментов, определяющих разность хода часов в точках с различными гравитационными потенциалами (то есть гравитационное красное смещение)[11].

Среди чисто лабораторных экспериментов по измерению гравитационного красного смещения можно отметить работу физиков Национального института стандартов и технологии (США) 2010 года, в которой этот эффект был с помощью атомных часов измерен между точками, разделёнными по вертикали расстоянием менее метра[12].

В настоящее время гравитационное замедление времени рутинно учитывается при определении международной шкалы атомного времени — показания отдельных атомных часов, составляющих пул хранителей времени этой шкалы и находящихся в лабораториях на разной высоте над уровнем моря, приводятся к поверхности геоида. Поправка на гравитационное замедление времени (а также на релятивистский эффект Доплера, который в данном случае имеет обратный знак) вводится в бортовые часы навигационных спутников GPS и GLONASS. Так, на высоте спутников GPS (20 180 км) поправка на гравитационное красное смещение относительно поверхности Земли составляет −45 мкс в сутки (знак минус означает, что часы без поправки на орбите идут быстрее, чем на Земле)[13].

Значение в истории науки[править | править вики-текст]

Стивен Вейнберг отмечает, что эксперимент Паунда и Ребки имеет особое значение, как независимая от экспериментов Этвеша и Дикке проверка принципа эквивалентности. Кроме того, эксперимент Паунда и Ребки является первым проведённым в земных условиях экспериментом по изучению влияния гравитации на электромагнитные явления[10].

Примечания[править | править вики-текст]

  1. 1 2 3 4 Pound R. V., Rebka Jr. G. A. (November 1, 1959). «Gravitational Red-Shift in Nuclear Resonance». Physical Review Letters 3 (9): 439—441. DOI:10.1103/PhysRevLett.3.439. Bibcode1959PhRvL...3..439P.
  2. Pound R. V., Rebka Jr. G. A. (April 1, 1960). «Apparent weight of photons». Physical Review Letters 4 (7): 337—341. DOI:10.1103/PhysRevLett.4.337. Bibcode1960PhRvL...4..337P.
  3. 1 2 Pound R. V., Snider J. L. (November 2, 1964). «Effect of Gravity on Nuclear Resonance». Physical Review Letters 13 (18): 539—540. DOI:10.1103/PhysRevLett.13.539. Bibcode1964PhRvL..13..539P.
  4. 1 2 3 Vessot R. F. C. et al. (December 29, 1980). «Test of Relativistic Gravitation with a Space-Borne Hydrogen Maser». Physical Review Letters 45 (26): 2081—2084. DOI:10.1103/PhysRevLett.45.2081. Bibcode1980PhRvL..45.2081V.
  5. Einstein А. (1916). «Die Grundlage der allgemeinen Relativitätstheorie». Annalen der Physik 354 (7): 769-822. DOI:10.1002/andp.19163540702. Bibcode1916AnP...354..769E. Проверено 2006-09-03.; Русский перевод в сборнике: Альберт Эйнштейн и теория гравитации: Сборник статей / Под ред. Е. Куранского. — М.: Мир, 1979. — 592 с. — С. 146—196.
  6. Dyson, F. W.; Eddington, A. S.; Davidson, C. A Determination of the Deflection of Light by the Sun's Gravitational Field, from Observations Made at the Total Eclipse of May 29, 1919 (англ.) // Philosophical Transactions of the Royal Society of London. Series A, Containing Papers of a Mathematical or Physical Character. — Vol. 220. — P. 291—333.
  7. Bruno Bertotti, Dieter Brill, and Robert Krotkov. Experiments on Gravitation // Gravitation: an introduction to current research / Witten L., ed.. — New York, London: John Wiley & Sons, Inc., 1962. — P. 23—29.
  8. 1 2 3 4 5 Паунд Р. В. О весе фотонов // Успехи физических наук. — 1960. — Т. 72, вып. 4. — С. 673—683.
  9. G. Audi, A.H. Wapstra, and C. Thibault (2003). «The AME2003 atomic mass evaluation (II). Tables, graphs, and references.». Nuclear Physics A 729: 337—676. DOI:10.1016/j.nuclphysa.2003.11.003. Bibcode2003NuPhA.729..337A.
  10. 1 2 Вейнберг С. 2.3.5. Изменение масштаба времени // Гравитация и космология / Пер. с англ. В. М. Дубовика и Э. А. Тагирова, под ред. Я. А. Смородинского. — М.: Мир, 1975. — С. 93—100. — 696 с.
  11. Will C. M. The Confrontation between General Relativity and Experiment // Living Rev. Relativity. — 2014. — Vol. 17. — P. 4. — DOI:10.12942/lrr-2014-4. — arΧiv1403.7377.
  12. Chou C. W., Hume D. B., Rosenband T., Wineland D. J. Optical Clocks and Relativity // Science. — 2010. — Vol. 329, № 5999. — P. 1630—1633. — DOI:10.1126/science.1192720.
  13. Misra P., Enge P. Global Positioning System. Signals, Measurements and Performance. — 2nd Ed. — Ganga-Jamuna Press, 2006. — P. 115. — ISBN 0-9709544-1-7.

Литература[править | править вики-текст]

  1. Паунд Р. В. О весе фотонов // Успехи физических наук. — 1960. — Т. 72, вып. 4. — С. 673—683.
  2. Руденко В. Н. Релятивистские эксперименты в гравитационном поле // Успехи физических наук. — 1978. — Т. 126, вып. 3. — С. 362—401.
  3. Брагинский В. Б., Полнарев А. Г. Удивительная гравитация. — М.: Наука, 1985. — 160 с. — (Библиотечка «Квант», вып. 39). — 110 000 экз.