Экспоненциальное распределение

Материал из Википедии — свободной энциклопедии
Перейти к: навигация, поиск
Показательное распределение
Плотность вероятности
Probability density function
Функция распределения
Cumulative distribution function
Обозначение
Параметры - интенсивность или обратный коэффициент масштаба
Носитель
Плотность вероятности
Функция распределения
Математическое ожидание
Медиана
Мода
Дисперсия
Коэффициент асимметрии
Коэффициент эксцесса
Информационная энтропия
Производящая функция моментов
Характеристическая функция

Экспоненциальное или показательное распределение — абсолютно непрерывное распределение, моделирующее время между двумя последовательными свершениями одного и того же события.

Определение[править | править вики-текст]

Случайная величина имеет экспоненциальное распределение с параметром , если её плотность имеет вид

.

Пример. Пусть есть магазин, в который время от времени заходят покупатели. При определённых допущениях время между появлениями двух последовательных покупателей будет случайной величиной с экспоненциальным распределением. Среднее время ожидания нового покупателя (см. ниже) равно . Сам параметр тогда может быть интерпретирован как среднее число новых покупателей за единицу времени.

В этой статье для определённости будем предполагать, что плотность экспоненциальной случайной величины задана первым уравнением, и будем писать: .

Функция распределения[править | править вики-текст]

Интегрируя плотность, получаем функцию экспоненциального распределения:

Моменты[править | править вики-текст]

Несложным интегрированием находим, что производящая функция моментов для экспоненциального распределения имеет вид:

,

откуда получаем все моменты:

.

В частности,

,
,
.

Отсутствие памяти[править | править вики-текст]

Пусть . Тогда .

Пример. Пусть автобусы приходят на остановку случайно, но с некоторой фиксированной средней интенсивностью. Тогда количество времени, уже затраченное пассажиром на ожидание автобуса, не влияет на время, которое ему ещё придётся прождать.

Связь с другими распределениями[править | править вики-текст]

  • Экспоненциальное распределение является распределением Пирсона типа X[1].
  • Минимум независимых экспоненциальных случайных величин также экспоненциальная случайная величина. Пусть независимые случайные величины, и . Тогда
.
.
  • Сумма независимых одинаково распределённых экспоненциальных случайных величин имеет гамма-распределение. Пусть независимые случайные величины, и . Тогда
.
.

Примечания[править | править вики-текст]

Литература[править | править вики-текст]


Bvn-small.png п о р       Вероятностные распределения
Одномерные Многомерные
Дискретные: Бернулли | Биномиальное | Геометрическое | Гипергеометрическое | Логарифмическое | Отрицательное биномиальное | Пуассона | Дискретное равномерное Мультиномиальное
Абсолютно непрерывные: Бета | Вейбулла | Гамма | Гиперэкспоненциальное | Распределение Гомпертца | Колмогорова | Коши | Лапласа | Логнормальное | Нормальное (Гаусса) | Логистическое | Накагами | Парето | Пирсона | Полукруговое | Непрерывное равномерное | Райса | Рэлея | Стьюдента | Трейси — Видома | Фишера | Хи-квадрат | Экспоненциальное | Variance-gamma Многомерное нормальное | Копула