Экспоненциальное распределение

Материал из Википедии — свободной энциклопедии
Перейти к: навигация, поиск
Показательное распределение
Плотность вероятности
Probability density function
Функция распределения
Cumulative distribution function
Обозначение \mathrm{Exp}(\lambda)\,
Параметры \lambda > 0 \, - интенсивность или обратный коэффициент масштаба
Носитель x \in [0;\infty)\!
Плотность вероятности \lambda e^{-\lambda x}\,
Функция распределения 1 - e^{-\lambda x}\,
Математическое ожидание \lambda^{-1}\,
Медиана \ln(2)/\lambda\,
Мода 0\,
Дисперсия \lambda^{-2}\,
Коэффициент асимметрии 2\,
Коэффициент эксцесса 6\,
Информационная энтропия 1 - \ln(\lambda)\,
Производящая функция моментов \left(1 - \frac{t}{\lambda}\right)^{-1}\,
Характеристическая функция \left(1 - \frac{it}{\lambda}\right)^{-1}\,


Экспоненциальное или показательное распределение — абсолютно непрерывное распределение, моделирующее время между двумя последовательными свершениями одного и того же события.

Определение[править | править исходный текст]

Случайная величина X имеет экспоненциальное распределение с параметром \lambda > 0, если её плотность имеет вид

f_X(x) = \begin{cases}
\lambda \,e^{-\lambda x} ,& x \ge 0, \\
0 ,& x < 0.
\end{cases}.

Пример. Пусть есть магазин, в который время от времени заходят покупатели. При определённых допущениях время между появлениями двух последовательных покупателей будет случайной величиной с экспоненциальным распределением. Среднее время ожидания нового покупателя (см. ниже) равно 1/\lambda. Сам параметр \lambda тогда может быть интерпретирован как среднее число новых покупателей за единицу времени.

В этой статье для определённости будем предполагать, что плотность экспоненциальной случайной величины X задана первым уравнением, и будем писать: X \sim \mathrm{Exp}(\lambda).

Функция распределения[править | править исходный текст]

Интегрируя плотность, получаем функцию экспоненциального распределения:


F_X(x) = \left\{\begin{matrix}
1-e^{-\lambda x}&,\; x \ge 0, \\
0 &,\; x < 0.
\end{matrix}\right.

Моменты[править | править исходный текст]

Несложным интегрированием находим, что производящая функция моментов для экспоненциального распределения имеет вид:

\mathrm{M}_X(t) = \left(1 - {t \over \lambda}\right)^{-1},

откуда получаем все моменты:

\mathbb{E}\left[X^n\right] = \frac{n!}{\lambda^n}.

В частности,

\mathbb{E}[X] = \frac{1}{\lambda},
\mathbb{E}\left[X^2\right] = \frac{2}{\lambda^2},
\operatorname{D} [X] = \frac{1}{\lambda^2}.

Отсутствие памяти[править | править исходный текст]

Пусть X \sim \mathrm{Exp}(\lambda). Тогда \mathbb{P}(X > s+t \mid X > s) = \mathbb{P}(X > t).

Пример. Пусть автобусы приходят на остановку случайно, но с некоторой фиксированной средней интенсивностью. Тогда количество времени, уже затраченное пассажиром на ожидание автобуса, не влияет на время, которое ему ещё придётся прождать.

Связь с другими распределениями[править | править исходный текст]

  • Минимум независимых экспоненциальных случайных величин также экспоненциальная случайная величина. Пусть X_1, \ldots, X_n независимые случайные величины, и X_i \sim \mathrm{Exp}(\lambda_i). Тогда
 Y = \min\limits_{i=1,\ldots,n}(X_i) \sim \mathrm{Exp}\left(\sum\limits_{i=1}^n \lambda_i\right).
\mathrm{Exp}(\lambda) \equiv \Gamma(1, 1/\lambda).
  • Сумма независимых одинаково распределённых экспоненциальных случайных величин имеет Гамма распределение. Пусть X_1, \ldots, X_n независимые случайные величины, и X_i \sim \mathrm{Exp}(\lambda). Тогда
Y = \sum\limits_{i=1}^n X_i \sim \Gamma(n, 1/\lambda).
X = - \frac{1}{\lambda} \ln U \sim \mathrm{Exp}(\lambda).
\mathrm{Exp}(1/2) \equiv \chi^2(2)
  • Экспоненциальное распределение является частным случаем распределения Вейбулла.


Bvn-small.png  п·о·р        Вероятностные распределения
Одномерные Многомерные
Дискретные: Бернулли | биномиальное | геометрическое | гипергеометрическое | логарифмическое | отрицательное биномиальное | Пуассона | дискретное равномерное мультиномиальное
Абсолютно непрерывные: Бета | Вейбулла | Гамма | гиперэкспоненциальное | Колмогорова | Коши | Лапласа | логнормальное | нормальное (Гаусса) | логистическое | Накагами |Парето | полукруговое | непрерывное равномерное | Райса | Рэлея | Стьюдента | Фишера | хи-квадрат | экспоненциальное | variance-gamma многомерное нормальное | копула