Электрический импеданс

Материал из Википедии — свободной энциклопедии
Перейти к навигации Перейти к поиску
Классическая электродинамика
VFPt Solenoid correct2.svg
Электричество · Магнетизм
См. также: Портал:Физика

Электри́ческий импеда́нс (ко́мплексное электри́ческое сопротивле́ние[1]) (англ. impedance от лат. impedio «препятствовать») — комплексное сопротивление между двумя узлами цепи или двухполюсника для гармонического сигнала.

Это понятие и термин ввёл физик и математик О. Хевисайд в 1886 году.[2][3]

Аналогия с электрическим сопротивлением проводника на примере резистора[править | править код]

Резистор — пассивный элемент, обладающий чисто активным сопротивлением. Реактивная составляющая комплексного сопротивления резистора равна нулю, так как соотношение между напряжением на резисторе и током через него не зависит от частоты тока/напряжения и является пассивным элементом, поскольку не содержит внутренних источников энергии. Если к его концам приложить некоторое напряжение U (подсоединить источник напряжения), то через резистор пойдёт электрический ток I. Если через резистор пропустить электрический ток I (подсоединить источник тока), то между концами резистора возникнет падение напряжения U. Резистор характеризуется электрическим сопротивлением, которое равно отношению напряжения U, к току I (см. закон Ома для участка цепи):

Применение понятия «электрическое сопротивление» к реактивным элементам (катушка индуктивности и конденсатор) при постоянном токе приводит к тому, что:

  • сопротивление идеальной катушки индуктивности стремится к нулю:
если пропустить через идеальную катушку индуктивности некоторый постоянный ток I, то при любом значении I, падение напряжения на катушке будет нулевым:
если приложить к конденсатору некоторое постоянное напряжение U, то при любом значении U, ток через конденсатор будет нулевым:

Это справедливо лишь для постоянного тока и напряжения. В случае же приложения к реактивному элементу переменного тока и напряжения, свойства реактивных элементов существенно иные:

  • напряжение между выводами катушки индуктивности не равно нулю;
  • ток, протекающий через конденсатор, не будет равен нулю.

Такое поведение не может быть описано в терминах активного сопротивления для постоянного тока, поскольку активное сопротивление предполагает постоянное, не зависящее от времени соотношение тока и напряжения, то есть отсутствие фазовых сдвигов между током и напряжением.

Было бы удобно иметь некоторый параметр аналогичный активному сопротивлению и для реактивных элементов, который бы связывал ток и напряжение на них подобно активному сопротивлению в формуле закона Ома для постоянного тока.

Такую характеристику можно ввести, если рассмотреть свойства реактивных элементов при воздействиях на них гармонических сигналов. В этом случае ток и напряжение оказываются связаны некой константой (подобной в некотором смысле активному сопротивлению), которая и получила название «электрический импеданс» (или просто «импеданс»). При рассмотрении импеданса используется комплексное представление гармонических сигналов, поскольку именно в таком представлении одновременно учитывается и амплитудные, и фазовые характеристики гармонических сигналов и откликов систем на гармоническое воздействие.

Определение[править | править код]

Импедансом называется отношение комплексной амплитуды напряжения гармонического сигнала, прикладываемого к двухполюснику, к комплексной амплитуде тока, протекающего через двухполюсник в установившемся режиме, т. е. после завершения переходных процессов. Для линейных пассивных цепей с постоянными параметрами в установившемся режиме импеданс не зависит от времени. Если время t в математическом выражении для импеданса не сокращается, значит, для данного двухполюсника понятие импеданса неприменимо.

(1)
Здесь:
  • j — мнимая единица[4];
  •  — циклическая (круговая) частота;
  • ,  — амплитуды напряжения и тока гармонического сигнала на частоте ;
  • ,  — фазы напряжения и тока гармонического сигнала на частоте ;
  • ,  — Комплексные амплитуды напряжения и тока гармонического сигнала на частоте

Исторически сложилось, что в электротехнике обозначение импеданса, комплексных амплитуд и других комплексных функций частоты записывают как , а не . Такое обозначение подчёркивает, что используются комплексные представления гармонических функций вида . Кроме того, над символом, обозначающим комплексный сигнал или комплексный импеданс, обычно ставят «домик» или точку: чтобы отличать от соответствующих действительных величин.

Физический смысл[править | править код]

Алгебраическая форма[править | править код]

Если рассматривать комплексный импеданс как комплексное число в алгебраической форме, то действительная часть соответствует активному сопротивлению, а мнимая — реактивному. То есть двухполюсник с импедансом можно рассматривать как последовательно соединенные резистор с сопротивлением и чисто реактивный элемент с импедансом

Рассмотрение действительной части полезно при расчёте мощности, выделяемой в двухполюснике, поскольку мощность выделяется только на активном сопротивлении.

Тригонометрическая форма[править | править код]

Пример графического представление импеданса на комплексной плоскости

Если рассматривать импеданс как комплексное число в тригонометрической форме, то модуль соответствует отношению амплитуд напряжения и тока (сдвиг фаз не учитывается), а аргумент — сдвигу фазы между током и напряжением, то есть на сколько фаза тока отстаёт от фазы напряжения или опережает.

Ограничения[править | править код]

Понятие импеданса применимо, если при приложении к двухполюснику гармонического напряжения, ток, вызванный этим напряжением, также гармонический той же частоты. Для этого необходимо и достаточно, чтобы двухполюсник был линейным и его параметры не менялись со временем и закончились переходные процессы. Если это условие не выполнено, то импеданс не может быть найден по следующей причине: невозможно получить выражение для импеданса, не зависящее от времени t, поскольку при вычислении импеданса множитель в (1) не сокращается.

  • Однако и для линейных двухполюсников (для которых зависимость от времени сокращается) импеданс всё же зависит от частоты (за исключением случая когда двухполюсник сводится к схеме из одних резисторов и импеданс оказывается действительной величиной).

Практически это означает, что импеданс может быть вычислен для любого двухполюсника, состоящего из резисторов, катушек индуктивности и конденсаторов, то есть из линейных пассивных элементов. Также импеданс хорошо применим для активных цепей, линейных в широком диапазоне входных сигналов (например, цепи на основе операционных усилителей). Для цепей, импеданс которых не может быть найден в силу указанного выше ограничения, бывает полезным найти импеданс в малосигнальном приближении для конкретной рабочей точки. Для этого необходимо перейти к эквивалентной схеме и искать импеданс для неё.

Вычисление импеданса[править | править код]

Идеальные элементы[править | править код]

Резистор[править | править код]

Для резистора импеданс всегда равен его сопротивлению R и не зависит от частоты:

(2)

Конденсатор[править | править код]

Ток и напряжение для конденсатора связаны соотношением:

(3)

Отсюда следует, что при напряжении

(4)

ток, текущий через конденсатор, будет равен:

(5)

После подстановки (4) и (5) в (1) получаем:

(6)

Катушка индуктивности[править | править код]

Аналогичное рассмотрение для катушки индуктивности приводит к результату:

(7)

Общий случай[править | править код]

Для произвольного двухполюсника, состоящего из элементов с известным импедансом, нет необходимости производить приведенные выше вычисления с целью нахождения импеданса. Импеданс находится по обычным правилам расчёта сопротивления сложной цепи, то есть используются формулы для сопротивления при параллельном и последовательном соединении резисторов. При этом все математические операции производятся по правилам действий над комплексными числами. Например, импеданс идеальных последовательно соединенных резистора, конденсатора и катушки индуктивности будет равен:

(8)

Экспериментальное измерение импеданса[править | править код]

Импеданс реальных элементов может быть измерен специальными приборами: измерителем RLC или анализатором импеданса. Эти приборы позволяют производить измерения в широком диапазоне частот и при различных постоянных напряжениях смещения.

Применение импеданса[править | править код]

Введение импеданса позволяет описывать поведение двухполюсника с реактивными свойствами при воздействии на него гармонического сигнала. Кроме того, в случае негармонического сигнала импеданс применяется столь же успешно. Для этого сигнал раскладывается на спектральные компоненты при помощи ряда Фурье или преобразования Фурье и рассматривается воздействие каждой спектральной компоненты. Вследствие линейности двухполюсника сумма откликов на спектральные компоненты равна отклику на исходный негармонический сигнал.

См. также[править | править код]

Примечания[править | править код]

  1. ГОСТ 19880-74 Электротехника. Основные понятия. Термины и определения. docs.cntd.ru. Проверено 7 ноября 2018.
  2. Science, p. 18, 1888
  3. Oliver Heaviside. The Electrician. P. 212; 23 July 1886 reprinted as Electrical Papers, p64, AMS Bookstore, ISBN 0-8218-3465-7
  4. В электротехнике и электронике мнимую единицу принято обозначать символом j, во избежание путаницы с символом i, традиционно применяемом для обозначения силы тока.

Литература[править | править код]

  • Бессонов Л. А. Теоретические основы электротехники. — 9-е изд. — М.: Высшая школа, 1996.
  • Графов Б. М., Укше Е. А. Электрохимические цепи переменного тока. — М.: Наука, 1983.