Эффект Комптона

Материал из Википедии — свободной энциклопедии
Перейти к навигации Перейти к поиску
Квантовая механика
См. также: Портал:Физика

Эффе́кт Ко́мптона (ко́мптон-эффе́кт, ко́мптоновское рассе́яние) — рассеяние фотона заряженной частицей, обычно электроном, названное в честь первооткрывателя Артура Холли Комптона. Если рассеяние приводит к уменьшению энергии, поскольку часть энергии фотона передаётся отражающемуся электрону, что соответствует увеличению длины волны фотона (который может быть рентгеновским или гамма-фотоном), то этот процесс называется эффектом Комптона. Обратное комптоновское рассеяние происходит, когда заряженная частица передаёт фотону часть своей энергии, что соответствует уменьшению длины волны кванта света.

Обнаружен американским физиком Артуром Комптоном в 1923 году в экспериментах с рентгеновским излучением[1][2]; за это открытие Комптон стал лауреатом Нобелевской премии по физике за 1927 год.

Эффект Комптона по природе подобен фотоэффекту — разница заключается в том, что при фотоэффекте фотон полностью поглощается электроном, тогда как при комптоновском рассеянии он только меняет направление движения и энергию[3].

Вступление[править | править код]

Рис. 1: Схема эксперимента Комптона. Комптоновское рассеяние происходит в графитовой мишени слева. Щель пропускает рентгеновские фотоны, рассеянные под выбранным углом. Энергия рассеянного фотона измеряется с помощью брэгговского рассеяния в кристалле справа в сочетании с ионизационной камерой; камера могла измерять только полную энергию, выделяемую с течением времени, а не энергию отдельных рассеянных фотонов.

Комптоновское рассеяние является примером неупругого рассеяния[4] света на свободной заряженной частице, где длина волны рассеянного света отличается от длины волны падающего излучения. В первоначальном эксперименте Комптона (см. Рис. 1) энергия рентгеновского фотона (≈17 кэВ) была намного больше, чем энергия связи атомного электрона, поэтому электроны можно было считать свободными после рассеяния. Величина, на которую изменяется длина волны света, называется комптоновским сдвигом. Хотя ядерное комптоновское рассеяние существует[5], комптоновское рассеяние обычно относится к взаимодействию, в котором участвуют только электроны атома.

Эффект наблюдал Артур Холли Комптон в 1923 году в Вашингтонском университете в Сент-Луисе и в последующие годы этот эффект подтвердил его аспирант Ю. Х. Ву. Комптон получил Нобелевскую премию по физике 1927 года за своё открытие.

Этот эффект важен, потому что он демонстрирует, что свет не может быть объяснён исключительно как волновое явление[6]. Томсоновское рассеяние, следующее из классической теории рассеяния электромагнитных волн заряженными частицами, не может объяснить сдвиги в длине волны при низкой интенсивности, потому что классически свет должен быть достаточной интенсивности для того, чтобы электрическое поле ускоряло заряженную частицу до релятивистской скорости, вызывало отдачу из-за радиационного давления и связанный с ним доплеровский сдвиг рассеянного света[7], но эффект стал бы сколь угодно малым при достаточно низких интенсивностях света независимо от длины волны. Таким образом, свет ведёт себя так, как будто он состоит из частиц, что объясняет низкоинтенсивное комптоновское рассеяние. Или предположение, что электрон можно рассматривать как свободный, неверно, что приводит к фактически бесконечной массе электрона, равной массе ядра (см., например, комментарий ниже об упругом рассеянии рентгеновских лучей, вызванном этим эффектом). Эксперимент Комптона убедил физиков в том, что свет можно рассматривать как поток частицеподобных объектов (квантов, называемых фотонами), энергия которых пропорциональна частоте световой волны.

Рис.2: Фотон с длиной волны падает слева и сталкивается с неподвижной мишенью, а новый фотон с длиной волны рассеивается под углом к первоначальному направлению движения. Мишень отскакивает, унося зависящее от угла количество падающей энергии.

Как показано на рис.2, взаимодействие между электроном и фотоном приводит к тому, что электрон получает часть энергии, а фотон с оставшейся энергией излучается в направлении, отличном от исходного, так что общий импульс системы также сохраняется. Если у рассеянного фотона ещё достаточно энергии, процесс может повториться. В этом сценарии электрон рассматривается как свободный или слабосвязанный. Экспериментальная проверка сохранения импульса в отдельных процессах комптоновского рассеяния Боте и Гейгером, а также Комптоном и Саймоном была важна для опровержения теории Бора — Крамерса — Слэтера, которая основывалась на старой квантовой теории.

Комптоновское рассеяние — один из трёх конкурирующих процессов при взаимодействии фотонов с веществом. При энергиях от нескольких эВ до нескольких кэВ, соответствующих спектру от видимого света до мягкого рентгеновского излучения, фотон может быть полностью поглощён, а его энергия может оторвать электрон от основного атома, процесс, известный как фотоэффект. Фотоны высокой энергии 1,022 МэВ и выше могут бомбардировать ядро и вызывать образование электрон-позитронной пары. Этот процесс называется рождением пар. Комптоновское рассеяние является наиболее важным процессом при взаимодействии в промежуточной области энергий.

Описание явления[править | править код]

К началу 20-го века исследования взаимодействия рентгеновских лучей с веществом шли полным ходом. Было замечено, что когда рентгеновские лучи известной длины волны взаимодействуют с атомами, рентгеновские лучи рассеиваются под углом и длина волны рассеянного кванта связана с . Хотя классический электромагнетизм предсказывал, что длина волны рассеянных лучей должна быть равна начальной длине волны[8], многочисленные эксперименты показали, что длина волны рассеянных лучей была больше (что соответствовало более низкой энергии), чем исходная длина волны.

В 1923 году Комптон опубликовал в Physical Review статью, в которой объяснил рентгеновский сдвиг, приписывая частицеподобный импульс световым квантам. Эйнштейн предложил световые кванты в 1905 году для объяснения фотоэффекта, но Комптон не основывался на работе Эйнштейна. Энергия световых квантов зависит только от частоты света. В своей статье Комптон вывел математическую связь между сдвигом длины волны и углом рассеяния рентгеновских лучей, предположив, что каждый рассеянный рентгеновский фотон взаимодействует только с одним электроном. Его статья завершается отчётом об экспериментах, которые подтвердили полученное им соотношение:

где:
 — начальная длина волны,
 — длина волны после рассеяния,
 — постоянная Планка ,
 — масса покоя электрона,
 — скорость света
 — угол рассеяния.

Величина известна как комптоновская длина волны электрона; она равна 2,43⋅10-12 м. Сдвиг длины волны равен по крайней мере нулю (=0°) и не более чем в два раза превышает комптоновскую длину волны электрона (=180°).

Комптон обнаружил, что у некоторых рентгеновских лучей не наблюдается сдвиг длины волны, несмотря на то, что они рассеиваются на большие углы; в каждом из этих случаев фотон не мог выбить электрон[8]. Таким образом, величина этого сдвига связана не с комптоновской длиной волны электрона, а с комптоновской длиной волны всего атома, которая может быть в 10000 раз меньше. Это известно как «когерентное» рассеяние на всём атоме, поскольку атом остается неповреждённым и не получает внутреннего возбуждения.

В первоначальных экспериментах Комптона, приведённых выше, непосредственно измерялся сдвиг длины волны. В современных экспериментах принято измерять энергии, а не длины волн рассеянных фотонов. Для данной энергии падающего кванта , энергия исходящего фотона в конечном состоянии, , задаётся как:

Невозможность классического толкования[править | править код]

В классической электродинамике взаимодействие электрона с электромагнитной волной, при учёте только электрической составляющей, описывается следующим образом: под действием периодических возмущений, электрон начинает колебаться с той же частотой, что и набегающая волна, и излучать новые электромагнитные волны той же частоты.

Если учесть в том числе и магнитное поле, то движение электрона будет описываться сложным дифференциальным уравнением, и, в случае если поле достаточно сильное, чтобы разогнать электрон до релятивистских скоростей, электрон может начинать излучать на частотах, отличных от частоты начальной волны[9].

Однако ни в коем случае классическая теория не предполагает существование у электронов отдачи — волна распределена в пространстве и не может «сконцентрироваться» на одном электроне и выбить его из атома. Поэтому регистрация таких электронов точно указывает на неполноту классического описания, а именно, на корпускулярно-волновую природу света[10].

Квазиклассический подход позволяет получить только изменение длины волны рассеянного фотона. Для вычисления сечения рассеяния необходимо применить уравнения квантовой электродинамики. Такое распределение даёт Формула Клейна — Нишины.

При росте энергии фотона вероятность рассеяния постепенно уменьшается, причём вероятность рассеяния на большие углы уменьшается быстрее.

Угол рассеяния электрона отдачи отличается от угла рассеяния фотона, и, в случае рассеяния на свободном электроне, описывается уравнением[11]:

где  — угол рассеяния фотона.

Вывод формулы рассеяния[править | править код]

Рис. 3: Энергии фотона при 500 кэВ и электрона после комптоновского рассеяния.

Фотон γ с длиной волны λ сталкивается с электроном e в атоме, который рассматривается как покоящийся. Столкновение заставляет электрон испытывать отдачу, и новый фотон γ' с длиной волны λ' отлетает под углом θ к первоначальному направлению движения фотона. (Далее e' — электрон после столкновения.) Комптон допускал возможность того, что взаимодействие иногда ускоряет электрон до скоростей, достаточно близких к скорости света, что требует применения специальной теории относительности Эйнштейна для правильного описания его энергии и импульса.

В заключение статьи Комптона 1923 года он сообщил о результатах экспериментов, подтверждающих предсказания его формулы рассеяния, тем самым подтверждая предположение, что фотоны несут импульс, а также энергию в виде квантов. В начале своего вывода он постулировал выражение для импульса фотона, приравнивая уже установленное Эйнштейном соотношение массы и энергии квантованным энергиям фотонов , которое Эйнштейн постулировал отдельно. Если , то эквивалентная масса фотона должна быть . Тогда импульс фотона равен этой эффективной массе, умноженной на инвариантную скорость фотона. Для фотона его импульс , и, таким образом, можно заменить на для всех слагаемых содержащих импульс фотона, которые возникают в процессе вывода, приведённого ниже. Вывод, который появляется в статье Комптона, более краток, но следует той же логике в той же последовательности, что и приведённый вывод.

Закон сохранения энергии просто уравнивает сумму энергий до и после рассеяния.

Комптон постулировал, что фотоны несут импульс[8] и таким образом, из закона сохранения импульса, импульсы частиц должны быть аналогичным образом связаны соотношением:

в котором первоначальный импульс электрона опускается в предположении, что он фактически равен нулю.

Энергии фотонов связаны с частотами соотношениями:

где  — постоянная Планка.

Перед событием рассеяния электрон рассматривается как достаточно близкий к состоянию покоя, так что его полная энергия полностью состоит из его массы покоя, исходя из его энергии для получается:

После рассеяния существует возможность того, что электрон может быть ускорен до значительной доли от скорости света, что означает, что его полная энергия должна быть представлена с использованием релятивистского соотношения энергия-импульса в виде:

После подстановки этих величин в выражение для сохранения энергии получается:

Это выражение можно использовать, чтобы найти величину импульса рассеянного электрона:

Эта величина импульса, полученного электроном (ранее равная нулю), превышает отношение энергию/c, потерянную фотоном:

Уравнение (1) связывает различные энергии, рассмотренные при столкновении. Изменение импульса электрона включает релятивистское изменение энергии электрона, поэтому оно не связано просто с изменением энергии, происходящим в классической физике. Изменение величины импульса фотона связано не только с изменением его энергии, оно также предполагает изменение направления.

Решение уравнения для сохранения импульса относительно импульса рассеянного электрона приводит к:

Использование скалярного произведения даёт квадрат его величины:

заменяется , и, умножая обе части на , получается[12]:

После замены слагаемых с импульсом фотона на , получается второе выражение для величины импульса рассеянного электрона:

Приравнивая альтернативные выражения для этого импульса, получается выражение:

которое после раскрытия квадрата и перестановки членов преобразуется к виду:

Разделив обе стороны на получается:

Наконец, поскольку , то:

Кроме того, угол между направлением отлетающего электрона и направлением падающего фотона определяется выражением:

Сечение эффекта Комптона описывается формулой Клейна — Нишины.

Рассеяние на связанном электроне[править | править код]

Рис. 4. Схематическое изображение рассеяния фотона на электроне внешней оболочки атома

В случае, если электрон, на котором рассеивается фотон, находится в атоме, то картина рассеяния усложняется.

В случае, если энергия связи электрона больше энергии налетающего фотона, то электрон не выбивается из оболочки, и фотон рассеивается всем атомом как одним целым. В таком случае вместо массы электрона в формуле для изменения длины волны будет стоять масса атома, которая в десятки тысяч раз больше — а значит, и изменение длины волны будет в десятки тысяч раз меньше. Поэтому низкоэнергетические фотоны (например, видимого диапазона) рассеиваются почти упруго — такое рассеяние называется рэлеевским.

Другим возможным вариантом является рамановское рассеяние, при котором часть энергии фотона переходит в энергию собственных колебаний молекулы или наоборот.

В случае собственно комптоновского рассеяния, если энергия налетающего фотона значительно больше , где  — постоянная тонкой структуры, а  — эффективный заряд ядра в единицах (разный для разных оболочек), можно считать, что электрон свободен, и его рассеяние описывается формулами рассеяния на свободном электроне[13].

В случае, если , следует учесть, что в уравнение сохранения энергии при рассеянии добавляется член, связанный с энергией связи, а с другой стороны, проявляется взаимодействие электрона и покинутого им иона. Для описания такого процесса используются фейнмановские диаграммы типа «чайка»[14].

Вероятность рассеяния близка к нулю при низких энергиях налетающего фотона, она постепенно возрастает при увеличении энергии, а затем спадает. Положение пика зависит от эффективного заряда ядра: чем он больше, тем большей энергии соответствует пик. Также, чем больше значение заряда ядра, тем меньше, в абсолютных величинах, пиковое сечение рассеяния[15].

В угловом распределении при росте заряда ядра подавляются вылеты с малым углом — то есть, наибольшую вероятность при рассеянии на K-электронах тяжёлых элементов имеет отражение на 180°, даже для высоких энергий[13].

Ещё одной особенностью рассеяния на электронах в атоме является уширение спектральной линии, соответствующей заданному углу рассеяния. То есть, если при рассеянии на свободном электроне, любому углу соответствует конкретное значение , то при рассеянии на атоме каждому углу соответствует целый диапазон таких значений. Это происходит потому, что в атоме электрон локализован, а следовательно имеет неопределенность в импульсе. Ширина линии пропорциональна энергии падающего фотона, и квадратному корню от энергии связи электрона[16].

Поскольку обычно у атома есть много электронов с разной энергией связи, то при одной и той же энергии падающего фотона для некоторых электронов рассеяние будет происходить по комптоновскому типу, а для других (энергия связи которых больше энергии фотона) — по рэлеевскому, в зависимости от того, с электроном какой оболочки провзаимодействовал фотон. Поэтому реальные спектры рассеянных фотонов обычно содержат два пика — один из них совпадает с частотой падающего света, а второй — с менее энергетическими комптоновскими фотонами[17].

Комптоновское рассеяние на связанном электроне является основным способом потери энергии в веществе для гамма-квантов среднего диапазона энергий от 100 кэВ (1 МэВ для тяжёлых атомов) до нескольких МэВ. Для фотонов меньшей энергии важнее процессы рэлеевского рассеяния и фотоэффекта, а для более высокоэнергетических — процессы рождения электрон-позитронных пар в кулоновском поле ядра[18].

Некоторые особые случаи комптоновского рассеяния[править | править код]

Двойное рассеяние[править | править код]

Иногда в процессе рассеяния электрон может поглотить один фотон, а испустить два. Такой процесс происходит значительно реже обычного рассеяния. Наиболее вероятным является случай, когда один из образовавшихся фотонов очень низкоэнергетический, и вероятность излучения двух фотонов с близкими энергиями — минимальная[19].

Также, возможно излучение трёх и более фотонов, однако оно подавляется с множителем (постоянной тонкой структуры) (1/137)n-1, где n — количество фотонов[13].

При излучении двух и более фотонов теряется прямая зависимость между углом отклонения и изменением длины волны, поэтому правильный учёт шума от двойного комптон-эффекта необходим для точного измерения нормального комптон-эффекта.

Нелинейное рассеяние[править | править код]

В случае, если интенсивность падающего света очень велика, электрон может поглотить несколько фотонов, и испустить один — такой процесс называется нелинейным комптоновским рассеянием. Его сечение, в отличие от обычного рассеяния, зависит от плотности фотонов в пучке[20]. Рассеяние по такому каналу становится вероятным, когда напряжённость поля, создаваемого электромагнитной волной, превышает напряжённость поля в атоме (которая даже для водорода имеет величину около 4·1010 В/м[21]) более чем в 137 раз. Такие условия возникают при очень высокой интенсивности излучения и на 2020 год являются достижимыми лишь с помощью нескольких самых мощных в мире лазеров[22] (интенсивность излучения которых должна быть выше чем 1021 Вт/см[23]). В природе такие процессы могут реализовываться на поверхности нейтронных звёзд[14].

Рассеяния на тяжёлых частицах[править | править код]

Фотоны могут рассеиваться на протонах и нейтронах так же как на электронах, однако из-за того, что нуклоны почти в 2000 раз тяжелее электрона, изменение длины волны также в тысячи раз меньше, а потому заметным становится лишь для очень высокоэнергетических фотонов[14]. Кроме того, взаимодействие нуклонов в ядре значительно сложнее взаимодействия электрона с ядром, что также влияет на форму спектра рассеянных фотонов[24].

Применение[править | править код]

Измеряя интенсивность рассеянного света можно с большой точностью определить электронную плотность в теле[25].

Если объект имеет сложное внутреннее строение, то можно разделить рассеянное излучение, идущее от каждого отдельного участка вдоль луча. Таким образом работает комптоновская томография[26]. Её главным преимуществом является возможность просканировать объект, даже если отсутствует полный доступ к нему (невозможно произвести полный оборот излучателя и детектора), а недостатком — низкое разрешение.

Анализируя сечение комптоновского рассеяния при различных энергиях, можно установить распределение моментов движения электронов в различных оболочках. Зависимость сечения от энергии называется комптоновским профилем вещества[27]. Также знание комптоновского профиля нужно для высокоточной рентгенографии, поскольку комптоновское рассеяние зашумляет картину рентгеновской тени.

Использование эффекта Комптона позволяет создавать лазеры с плавной регулировкой длины волны — такая регулировка происходит вследствие вращения мишени вокруг рассеивателя[28].

Если фотон детектируется сначала одним детектором, а затем — другим, то, анализируя изменение энергии фотона, можно определить его начальную траекторию[29]. Так работают комптоновские гамма-телескопы[en], имеющие очень широкое поле зрения. Например, телескоп на орбитальной обсерватории «Комптон» имеет поле зрения в 1 стерадиан.

Обратное комптоновское рассеяния релятивистских электронов на реликтовом микроволновом излучении создаёт фотоны отдачи с энергией 50-100 кэВ[13]. Это явление известно как эффект Сюняева — Зельдовича. Детектируя такие высокоэнергетические фотоны, можно изучать крупномасштабное распределение материи во Вселенной. Самый полный обзор источников такого излучения был сделан космическим телескопом «Планк»[30].

Комптоновское рассеяние[править | править код]

Комптоновское рассеяние имеет первостепенное значение для радиобиологии, поскольку это наиболее вероятное взаимодействие гамма-лучей и рентгеновских лучей высоких энергий с атомами в живых организмах — применяется в лучевой терапии[31].

В материаловедении комптоновское рассеяние можно использовать для исследования волновой функции электронов в веществе в импульсном представлении[32].

Комптоновское рассеяние — важный эффект в гамма-спектроскопии, который приводит к возникновению комптоновского края, поскольку гамма-лучи также рассеиваются за пределы используемых детекторов. Комптоновское подавление используется для обнаружения паразитного рассеяния гамма-лучей, для учёта этого эффекта.

Магнитное комптоновское рассеяние[править | править код]

Магнитное комптоновское рассеяние — это модификация ранее упомянутой техники, которая включает намагничивание кристаллического образца, под действием высокоэнергетических циркулярно-поляризованных фотонов. Путём измерения энергии рассеянных фотонов и изменения намагниченности образца генерируются два разных комптоновских профиля (один для импульсов со спином вверх и один для импульсов со спином вниз). Разница между этими двумя профилями даёт магнитный профиль Комптона (МПК), определяемый функцией  — одномерной проекцией спиновой плотности электронов.

где  — количество неспаренных электронов в системе;
и представляют собой трёхмерные распределения электронов по импульсам для электронов с основным и неосновным проекциями спина, соответственно.

Поскольку этот процесс рассеяния некогерентен (нет фазового соотношения между рассеянными фотонами), МПК представляет объёмные свойства образца и измеряет основное состояние. Это означает, что МПК идеален для сравнения с теоретическими методами, такими как теория функционала плотности. Площадь под графиком МПК прямо пропорциональна спиновому моменту системы, поэтому в сочетании с методами измерения полного магнитного момента (такими как СКВИД-магнитометрия) может использоваться для выделения как спинового, так и орбитального вкладов в общий магнитный момент системы. Форма МПК также даёт представление о происхождении магнетизма в системе[33].

Обратный комптоновский эффект[править | править код]

Если фотон рассеивается на движущихся электронах, то энергия рассеянного фотона может быть больше, чем энергия падающего (соответственно, энергия электрона после столкновения уменьшается). Такой процесс называют обратным комптоновским рассеянием. Этот процесс является основным механизмом потери энергии релятивистскими электронами в межзвёздном пространстве. Если начальные скорости фотонов распределены изотропно, то средняя энергия рассеянных фотонов будет равняться[34]:

Энергия рассеянного на электроне фотона:

где:
— угол между направлениями их движения;
— угол между направлениями движения падающего и рассеянного фотона;
[34] — безразмерная скорость электрона.

В случае «лобового» столкновения[34]:

В случае обратного комптон-эффекта изменение длины волны падающего света зависит от его начальной энергии, тогда как для неподвижных электронов такой зависимости нет.

Обратный эффект Комптона ответственен за рентгеновское излучение галактических источников, рентгеновскую составляющую реликтового фонового излучения (эффект Сюняева — Зельдовича), трансформацию плазменных волн в высокочастотные электромагнитные волны[35]. Эффект также наблюдается, когда фотоны космического микроволнового фона движутся через горячий газ, окружающий скопление галактик. Фотоны реликтового излучения рассеиваются электронами в этом газе до более высоких энергий, что приводит к эффекту Сюняева — Зельдовича. Наблюдения этого эффекта обеспечивают практически независимые от красного смещения средства обнаружения скоплений галактик.

Обратное комптоновское рассеяние играет важную роль в астрофизике. В рентгеновской астрономии предполагается, что аккреционный диск, окружающий черную дыру, создаёт тепловой спектр. Фотоны с более низкой энергией из этого спектра, рассеиваются до более высоких энергий релятивистскими электронами в окружающей короне. Предполагается, что это вызывает степенну́ю составляющую в рентгеновских спектрах (0,2-10 кэВ) аккреции черных дыр[источник не указан 233 дня].

Некоторые установки синхротронного излучения рассеивают лазерный свет от ускорительного электронного луча. Это комптоновское обратное рассеяние производит фотоны высоких энергий в диапазоне от МэВ до ГэВ[36][37] и впоследствии используются в экспериментах по ядерной физике.

Примечания[править | править код]

  1. Комптон А. Рассеяние рентгеновских лучей как частиц // Эйнштейновский сборник 1986—1990. — М.: Наука, 1990. — С. 398—404. — 2600 экз.
  2. Филонович С. Р. Артур Комптон и его открытие // Эйнштейновский сборник 1986—1990. — М.: Наука, 1990. — С. 405—422. — 2600 экз.
  3. Prof. Jeffrey Coderre. Interactions of Photons with Matter. ocw.mit.edu (2004).
  4. Упругое или неупругое рассеяние? Падающий фотон теряет энергию в лабораторной системе отсчёта, что столетия практики отождествляло с неупругим рассеянием, хотя и в системе цента масс при этом соответствующие массы остаются прежними, новые виды частиц не создаются, а кинетическая энергия сохраняется, что является признаком «упругого столкновения». В результате физики-ядерщики предпочитают подчёркивать упругость, а физики-атомщики и молекулярные физики используют «неупругость».
  5. P. Christillin (1986). “Nuclear Compton scattering”. J. Phys. G: Nucl. Phys. 12 (9): 837—851. Bibcode:1986JPhG...12..837C. DOI:10.1088/0305-4616/12/9/008.
  6. Griffiths, David. Introduction to Elementary Particles. — Wiley, 1987. — P. 15, 91. — ISBN 0-471-60386-4.
  7. C. Moore. Observation of the Transition from Thomson to Compton Scattering in Optical Multiphoton Interactions with Electrons.
  8. 1 2 3 Taylor, J.R. Modern Physics for Scientists and Engineers / J.R. Taylor, C.D. Zafiratos, M.A. Dubson. — 2nd. — Prentice Hall, 2004. — P. 136–9. — ISBN 0-13-805715-X.
  9. Сивухин, 1986, p. 31.
  10. Сивухин, 1986, p. 32.
  11. Сивухин, 1986, p. 30.
  12. Борн М. Атомная физика. — М.: Мир, 1965. — С. 389.
  13. 1 2 3 4 Прохоров, 1990, p. 431.
  14. 1 2 3 Прохоров, 1990, p. 432.
  15. Mikhailov Aleksandr, ..., Nefiodov Andrei (2018). “Ionization-Excitation of Helium-Like Ions at Compton Scattering”. Journal of Experimental and Theoretical Physics. 127: 620—626. DOI:10.1134/S1063776118090170. Дата обращения 26 липня 2020. Проверьте дату в |accessdate= (справка на английском)
  16. Kaplan Ilya, ..., Yudin Gennadiy (1975). “Nonrelativistic compton effect for a bound electron” (PDF). Journal of Experimental and Theoretical Physics. 69 (1): 9—22. Дата обращения 26 липня 2020. Проверьте дату в |accessdate= (справка на английском)
  17. R. Nave. Compton Scattering Data. HyperPhysics. Дата обращения: 26 липня 2020. Архивировано 23 лютого 2010.
  18. Ишханов,Капитонов,Кэбин, 2007, p. 535.
  19. Mandl Franz et. al. (1952). “The theory of the double Compton effect”. Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences. 215 (1123): 497—507. DOI:10.1098/rspa.1952.0227.
  20. Ivanov Dmitry et. al. (2006). “Complete Description of Non-Linear Compton and Breit-Wheeler Processes”. Acta Physica Polonica B. 37 (4): 1073.
  21. Dr. Susan Lea. Electric fields in dielectrics. San Francisco State University (2006).
  22. Danson; et al. (2019). “Petawatt and exawatt class lasers worldwide” (PDF). High Power Laser Science and Engineering. 7: 54. DOI:10.1017/hpl.2019.36.
  23. Bisesto; et al. (2018). “Evolution of the electric fields induced in high intensity laser–matter interactions”. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment. 909: 398—401. DOI:10.1016/j.nima.2018.03.040.
  24. Bernardini et. al. (1960). “Proton compton effect”. Il Nuovo Cimento (1955-1965). 18: 1203—1236. DOI:10.1007/BF02733177. Дата обращения 31 липня 2020. Проверьте дату в |accessdate= (справка на английском)
  25. Sharaf, Jamal (2001). “Practical aspects of Compton scatter densitometry”. Applied Radiation and Isotopes. 54 (5): 801—809. DOI:10.1016/S0969-8043(00)00333-X. Дата обращения 26 липня 2020. Проверьте дату в |accessdate= (справка на английском)
  26. Redler (2018). “Compton scatter imaging: A promising modality for image guidance in lung stereotactic body radiation therapy”. Medical Physics. 45 (3): 1233—1240. DOI:10.1002/mp.12755. Дата обращения 26 липня 2020. Проверьте дату в |accessdate= (справка на английском)
  27. Rao; et al. (2002). “Doppler Broadening and its Contribution to Compton Energy-Absorption Cross Sections: An Analysis of the Compton Component in Terms of Mass-Energy Absorption Coefficient” (PDF). Journal of Physical and Chemical Reference Data. 31 (3): 769. DOI:10.1063/1.1481880. Дата обращения 26 липня 2020. Проверьте дату в |accessdate= (справка на английском)
  28. Источники гамма-излучения. Ядерная физика в Интернете. Дата обращения: 26 липня 2020. Архивировано 21 березня 2021.
  29. The Imaging Compton Telescope (COMPTEL). Nasa.gov (2005). Дата обращения: 27 липня 2020. Архивировано 21 березня 2021.
  30. Planck Collaboration (2014). “Planck 2013 results. XXIX. The Planck catalogue of Sunyaev-Zeldovich sources” (PDF). Astronomy & Astrophysics. 571: 41. DOI:10.1051/0004-6361/201321523. Дата обращения 7 березня 2021. Проверьте дату в |accessdate= (справка на английском)
  31. Camphausen KA, Lawrence RC. «Principles of Radiation Therapy» in Pazdur R, Wagman LD, Camphausen KA, Hoskins WJ (Eds) Cancer Management: A Multidisciplinary Approach. 11 ed. 2008.
  32. I. G. Kaplan (2003). “Compton scattering beyond the impulse approximation”. Physical Review B. 68: 235104. arXiv:cond-mat/0304294. DOI:10.1103/PhysRevB.68.235104.
  33. Malcolm Cooper. X-Ray Compton Scattering. — OUP Oxford, 14 October 2004. — ISBN 978-0-19-850168-8.
  34. 1 2 3 Эффект Комптона. Ядерная физика в Интернете. Дата обращения: 25 липня 2020. Архивировано 21 березня 2021.
  35. Комптона эффект // Большая советская энциклопедия : [в 30 т.] / гл. ред. А. М. Прохоров. — 3-е изд. — М. : Советская энциклопедия, 1969—1978.
  36. GRAAL home page. Lnf.infn.it. Дата обращения: 8 ноября 2011.
  37. Duke University TUNL HIGS Facility. Дата обращения: 31 января 2021.

Литература[править | править код]