Ядерная зима

Материал из Википедии — свободной энциклопедии
Перейти к: навигация, поиск

Я́дерная зима́ — гипотетическое глобальное состояние климата Земли в результате широкомасштабной ядерной войны. Предполагается, что в результате выноса в стратосферу некоторого количества дыма и сажи, вызванного обширными пожарами при взрыве нескольких ядерных боезарядов, температура на планете повсеместно снизится до арктической в результате существенного повышения количества отражённых солнечных лучей[1][2][3][4].

Рождение теории[править | править вики-текст]

Загрязнение воздуха в Китае, по мнению учёных, напоминает ядерную зиму[5]

Возможность возникновения ядерной зимы предсказана Г. С. Голицыным в СССР и Карлом Саганом[2] в США, затем эта гипотеза была подтверждена модельными расчётами Вычислительного центра АН СССР. Эта работа была проведена академиком Н. Н. Моисеевым и профессорами В. В. Александровым[6] и Г. Л. Стенчиковым[7]. Ядерная война приведёт к «глобальной ядерной ночи», которая продлится около года. Сотни миллионов тонн грунта, сажа горящих городов и лесов сделают небо непроницаемым для солнечного света. Были рассмотрены две основные возможности: суммарная мощность ядерных взрывов 10 000 и 100 Мт. При мощности ядерных взрывов в 10 000 Мт солнечный поток у поверхности Земли сократится в 400 раз, характерное время самоочищения атмосферы составит приблизительно 3-4 месяца. При мощности ядерных взрывов в 100 Мт солнечный поток у поверхности Земли сократится в 20 раз, характерное время самоочищения атмосферы порядка месяца. При этом кардинальным образом изменяется весь климатический механизм Земли, что проявляется в исключительно сильном охлаждении атмосферы над материками (за первые 10 дней средняя температура падает на 15 градусов, а затем начинает незначительно повышаться)[8][9]. В отдельных районах Земли похолодает и на 30-50 градусов. Эти работы получили широкий общественный резонанс в широкой печати разных стран[10]. Впоследствии многие физики оспаривали достоверность и устойчивость полученных результатов, однако убедительного опровержения гипотеза не получила.

Современные расчёты[править | править вики-текст]

В современных работах 2007, 2008 гг. сделан шаг вперёд по сравнению с первопроходцами этих изысканий. Компьютерное моделирование показывает, что небольшая ядерная война, когда каждая воюющая сторона использует около 50 зарядов, каждый из которых по мощности равен бомбе, взорванной над Хиросимой, взрывая их в атмосфере над городами, даст беспрецедентный климатический эффект, сравнимый с малым ледниковым периодом. Кстати, 50 зарядов — это примерно 0,3 % от текущего мирового арсенала (2009)[11].

Согласно подсчётам американских учёных Оуэна Туна и Ричарда Турко, Индо-Пакистанская война с использованием боезарядов суммарной мощностью 750 кт привела бы к выбросу в стратосферу 6,6 Мт (6,6 млн тонн) сажи. Такой степени загрязнения достаточно, чтобы температура на Земле опустилась ниже, чем в 1816 годуГод без лета»). Обмен ядерными ударами между Россией и США с использованием 4400 зарядов мощностью не более 100 кт каждый привел бы к выбросу 150 Мт сажи, тогда как используемая модель расчёта показывает, что уже 75 Мт сажи в стратосфере приведут к мгновенному падению значения потока энергии на м² земной поверхности, 25-процентному сокращению осадков и падению температуры ниже значений плейстоценового ледникового периода. Подобная картина сохранялась бы не менее 10 лет, что привело бы к катастрофическим последствиям для сельского хозяйства[12].

Критика[править | править вики-текст]

Концепция «ядерной зимы» основана на долгосрочных моделях изменения климата. В то же время, подробное численное и лабораторное моделирование начальной стадии развития крупномасштабных пожаров показало, что эффект загрязнения атмосферы имеет как местные, так и глобальные последствия. На основании полученных результатов сделан вывод о возможности ядерной зимы (Музафаров, Утюжников, 1995[13], работы под руководством А. Т. Онуфриева в МФТИ[14]). Противники концепции «ядерной зимы» ссылались на то обстоятельство, что в ходе «ядерной гонки» в 19451998 гг. в мире было произведено около 2000 ядерных взрывов различной мощности в атмосфере и под землей[15]. В совокупности, по их мнению, это равно эффекту затяжного полномасштабного ядерного конфликта. В этом смысле «ядерная война» уже состоялась, не приведя к глобальной экологической катастрофе. Однако фундаментальные отличия ядерных испытаний от обмена ударами состоят в том, что:

  • Испытания производились над пустыней или водой и не вызывали массовых пожаров и огненных штормов, пыль поднималась в атмосферу только за счёт энергии ядерного взрыва, а не энергии, накопленной в сгораемых материалах, для выделения которой ядерный взрыв является лишь «спичкой».
  • При испытаниях поднималась в основном тяжёлая пыль из раздробленных и оплавленных горных пород, имеющая большую плотность и высокое отношение массы к площади, то есть склонная к быстрому оседанию. Сажа от пожаров имеет меньшую плотность и более развитую поверхность, что позволяет ей дольше удерживаться в воздухе и подниматься выше с восходящими потоками.
  • Испытания были растянуты по времени, а в случае войны пыль и сажа будут выброшены в воздух одномоментно.

Вместе с тем, по мнению противников концепции «ядерной зимы», такие расчёты не учитывают разработанные ещё в 1960-е годы контрсиловые сценарии ядерного конфликта. Речь идет о вариантах ведения военных действий, когда целями для ядерных ударов выступают только пусковые установки противника, а против его городов ядерное оружие не применяется.

Выброс сажи в стратосферу как причина «ядерной зимы» также критикуется как маловероятное событие. При поражении современного города выброс сажи рассчитывается по принципу использования схемы лесного пожара с учётом гораздо большего количества топлива, существующего на той же территории. Примером является бомбежка немецких и японских городов во время Второй Мировой Войны («Огненный смерч»). Такая модель, конечно, предполагает множественные источники возгорания в неразрушенных конструкциях. Поскольку пламя во время пожара гораздо быстрее распространяется по вертикали, чем по горизонтали, то стоящие здания образуют благоприятные условия для возникновения массовых пожаров. В статье И. М. Абдурагимова «О несостоятельности концепции „ядерной ночи“ и „ядерной зимы“ вследствие пожаров после ядерного поражения»[16] приводится жесткая критика по количеству сажи, который выделится в результате полномасштабной ядерной войны. При лесном пожаре сгорает в среднем только 20 % горючей массы, из неё только половина является по массе чистым углеродом, и большая часть этого углерода сгорает полностью, то есть, — без образования частиц угля. При этом, только часть сажи будет настолько мелкодисперсной, что сможет висеть в тропосфере и затемнять Землю. Чтобы транспортировать эту сажу в тропосферу, где она может «зависнуть» из-за отсутствия там конвекции, нужно возникновение специфического явления — огненного смерча (поскольку сам шар ядерного гриба, проходит высоко в тропосферу, имеет настолько большую температуру, что в нем все частицы сажи сгорают). Огненный смерч образуется не во всех ядерных взрывах, в особенности не должен он образовываться в современных городах (например, в городах бывшего СССР, построенных таким образом, чтобы избежать этого эффекта при обычной, неядерной бомбежке). Кроме того, он резко улучшает сгорание, как меха в плавильной печи, в силу чего сажи в нем гораздо меньше. Эти особенности отличают сажу выделяющеюся при пожаре от обычной вулканической пыли, которая буквально выстреливается в стратосферу из жерла вулкана. Мощность термоядерного оружия настолько велика, что при поражении современного города поверхность оплавляется и «сравнивается с землей», тем самым погребая пожароопасный материал под несгораемыми остатками строений. Однако некоторые индустриальные объекты бомбежки — такие как, например, нефтехранилища, могут являться источниками значительного количества сажи в атмосфере, что может привести к нежелательным последствия местного характера, как и произошло во время войны в Персидском заливе в 1991 году. Температура в Персидском заливе упала на 4-6 градусов, но, вопреки существовавшим в то время моделям, дымы не поднялись выше 6 км и не проникли в стратосферу.

Позднее сторонники теории Сагана объяснили это тем, что его модель была основана на более быстром образовании сажи, что создало бы условия для проникновения её в стратосферу. Однако во всех известных случаях возникновения значительных зольных выбросов в атмосферу, как в случае «огненных смерчей» на Европейском ТВД Второй Мировой войны или аналогичного явления в Хиросиме (когда город загорелся из-за многочисленных кухонных пожаров в повреждённых зданиях, так как большинство населения в то время использовало угольные печи) дымы не поднимались выше уровня тропосферы (5-6 км) и сажа вымывалась дождями в течение нескольких дней после этого (в Хиросиме этот феномен получил название «чёрный дождь»). Данные, полученные во время наблюдения за лесными пожарами, также не подтверждают возможности проникновения значительного количества сажи в стратосферу. Феномен попадания сажи в высокую тропосферу чаще наблюдается в жарких субтропических регионах и при этом в незначительных количествах, не способных серьёзно повлиять на температуру поверхности. Даже если предположить, что ядерное оружие будет применяться в тропиках, вероятность пожаров там значительно меньше, чем в средних широтах, из-за высокой влажности. Во время испытаний ядерного оружия на атоллах Бикини и Эниветок пожары не возникли именно по этой причине.

Даже если предположить, что выброс 150 Мт сажи в стратосферу действительно будет иметь место, то последствия этого могут и не быть настолько катастрофичными, как предполагается моделями Карла Сагана. Выбросы значительно большего количества сажи во время извержений вулканов имеют значительно меньший эффект на климат. Например, последствия извержения Пинатубо в июне 1991 года, когда за несколько дней извержения было выброшено около 10 км³ горных пород и высота эруптивной колонны составляла 34 км (по этому показателю оно уступает в XX веке только извержению КатмайНоварупта в национальном парке Катмай на Аляске), были ощутимы по всему миру. Оно привело к самому мощному (по шкале вулканических извержений) выбросу аэрозолей в стратосферу со времён извержения вулкана Кракатау в 1883 году. На протяжении следующих месяцев в атмосфере наблюдался глобальный слой сернокислотного тумана. Однако при этом было зарегистрировано падение температуры лишь на 0,5 °C и имело место некоторое сокращение озонового слоя, в частности, образование особо крупной озоновой дыры над Антарктидой.

Извержение вулкана Тамбора на индонезийском острове Сумбава в 1815 году было гораздо более мощным — было выброшено около 150 км³. Значительное количество вулканического пепла оставалось в атмосфере на высотах до 80 км в течение нескольких лет и вызывало интенсивную окраску зорь, но глобальная температура упала лишь на 2,5 °C. Последствия этого явления, конечно, были весьма тяжелы для сельского хозяйства, уровень которого в то время был весьма примитивным по современным понятиям, но всё же не являлись «библейской» катастрофой и не привели к депопуляции регионов, где население голодало в результате неурожаев.

Вышеупомянутое извержение вулкана Пинатубо 1991 года было последним извержением категории VEI 6. Помимо сажи, вулканы извергают и CO2. Его основное воздействие на атмосферу состоит в нарушении баланса углеродного цикла из-за снижения на 0,5 °C средней температуры на планете по причине антипарникового эффекта. Однако же увеличение амплитуды сезонных колебаний на графике Килинга в этот период времени указывает на некоторое улучшение условий для осуществления фотосинтеза растениями в начале 1990-х годов. Последнее объясняется эффектом рассеяния солнечного излучения на частицах стратосферного аэрозоля, что и привело к увеличению потребления атмосферного CO2 растительностью.[17]

Также теория ядерной зимы не учитывает парниковый эффект от гигантских выбросов углекислого и других парниковых газов вследствие массового применения ядерного оружия, а также то, что в первое время после войны падение температуры от прекращения доступа к солнечному свету будет компенсироваться огромными тепловыми выбросами от пожаров и самих взрывов.

Изменение радиационного воздействия аэрозольных частиц в атмосфере и на поверхности снега и льда. В качестве независимых компонентов показано воздействие сажи (black carbon), сажи на снегу, органического углерода (ОУ), вторичных органических аэрозолей (ВОА), нитратов и сульфатов. Использованы приведенные в материалах первой рабочей группы Пятого оценочного доклада МГЭИК данные Shindell et al 2013c и Lee et al. 2013 в сочетании с результатами моделей GISS-E2 и OsloCTM2[18].

Как минимум, с начала 1960-х годов и, по крайней мере, до 1990 года наблюдалось постепенное уменьшение количества солнечного света, достигающего поверхности Земли, это явление называют глобальным затемнением (Global dimming)[19]. Главной его причиной являются пылевые частицы, попадающие в атмосферу при вулканических выбросах и в результате производственной деятельности. Наличие таких частиц в атмосфере создает охлаждающий эффект, возникающий благодаря их способности отражать солнечный свет. Два побочных продукта сжигания ископаемого топлива — CO2 и аэрозоли — на протяжении нескольких десятилетий частично компенсировали друг друга, уменьшая эффект потепления в этот период[20].

Радиационное воздействие аэрозольных частиц зависит от их концентрации. При сокращении выбросов частиц снижение концентрации предопределяется их временем жизни в атмосфере (порядка одной недели). Углекислый газ имеет время жизни в атмосфере, измеряемое столетиями, таким образом, изменение концентрации аэрозолей способно дать лишь временную отсрочку потеплению, вызываемому CO2.[21]

Мелкодисперсные частицы углерода (сажа) по своему влиянию на рост температуры уступают только CO2. Их воздействие зависит от того, находятся ли они в атмосфере или на поверхности земли. В атмосфере они поглощают солнечную радиацию, нагревая воздух и охлаждая поверхность. В изолированных районах с высокой концентрацией сажи, например, в сельских районах Индии, до 50 % потепления у поверхности земли маскируются облаками из сажи.[22] При выпадении на поверхность, особенно на ледники или на снег и лед в Арктике, частицы сажи приводят к нагреву поверхности за счет снижения её альбедо.[23]

Учёный Фред Сингер так высказался на эту тему[24]:

Я всегда считал «ядерную зиму» научно неподтвержденным обманом, о чём я и говорил в моей дискуссии с Карлом Саганом во время обсуждения в Nightline. Данные, полученные во время нефтяных пожаров в Кувейте, поддерживают эту точку зрения. На самом деле, ядерные взрывы могли бы создать сильный парниковый эффект и вызвать потепление, а не похолодание. Будем надеяться, что мы никогда не узнаем, как это произойдет на самом деле.

Теоретические варианты ядерной зимы:[править | править вики-текст]

  1. Падение температуры на один градус на один год, не оказывающее значительного влияния на человеческую популяцию. Как после извержения вулкана Пинатубо в 1991 году.
  2. Ядерная осень – снижение температуры на 2-4 °С в течение нескольких лет; имеют место неурожаи, ураганы.
  3. Год без лета – интенсивные, но относительно короткие холода в течение года, гибель значительной части урожая, голод и смерть от холода в некоторых странах. Это уже происходило после крупных извержений вулканов в VI веке нашей эры [Волков 2007], в 1783 г., в 1815 г.
  4. Десятилетняя ядерная зима – падение температуры на всей Земле в течении 10 лет примерно на 30-40 °С. Этот сценарий подразумевается моделями ядерной зимы. Выпадение снега на большей части земли, за исключением некоторых экваториальных приморских территорий. Массовая гибель людей от голода, холода, а также от того, что снег будет накапливаться и образовывать многометровые толщи, разрушающие строения и перекрывающий дороги. Гибель большей части населения Земли, однако миллионы людей выживут и сохранят ключевые технологии. Риски: продолжение войны за тёплые места, неудачные попытки согреть Землю с помощью новых ядерных взрывов и искусственных извержений вулканов, переход в неуправляемый нагрев ядерного лета. Однако даже если допустить этот сценарий, окажется, что одного только мирового запаса рогатого скота (который замёрзнет на своих фермах и будет храниться в таких естественных «холодильниках») хватит на годы прокорма всего человечества, а Финляндия имеет стратегический запас еды (зерна) на 10 лет.
    Ядерная зима
  5. Новый ледниковый период. Является гипотетическим продолжением предыдущего сценария, в ситуации, когда отражающая способность Земли возрастает за счёт снега, и начинают нарастать новые ледяные шапки от полюсов и вниз, к экватору. Однако часть суши у экватора остаётся пригодной для жизни и сельского хозяйства. В результате цивилизации придётся радикально измениться. Трудно представить огромные переселения народов без войн. Много видов живых существ вымрет, но большая часть разнообразия биосферы уцелеет, хотя люди будут уничтожать её ещё более безжалостно в поисках хоть какой-либо пищи. Люди уже пережили несколько ледниковых периодов, которые могли начаться весьма резко в результате извержений сверхвулканов и падений астероидов (извержение вулкана Тоба, Элатинская кометная катастрофа).
  6. Необратимое глобальное похолодание. Оно может быть следующей фазой ледникового периода, при наихудшем развитии событий. На всей Земле на геологически длительное время установится температурный режим, как в Антарктиде, океаны замерзнут, суша покроется толстым слоем льда. Только высокотехнологичная цивилизация, способная строить огромные сооружения подо льдом, может пережить такое бедствие, но такая цивилизация могла бы, вероятно, найти способ обратить вспять этот процесс. Жизнь может уцелеть только около геотермальных источников на морском дне.

Последний раз Земля вошла в это состояние примерно 600 млн. лет назад, то есть до выхода животных на сушу, и смогла выйти из него только благодаря накоплению СО2  в атмосфере [Hoffman, Schrag 2000]. В то же время, за последние 100 000 лет было четыре обычных оледенения, которые не привели ни к необратимому обледенению, ни к человеческому вымиранию, а значит, наступление необратимого обледенения является маловероятным событием. Наконец, в случае, если бы Солнце вообще перестало светить, наихудшим исходом было бы превращение всей атмосферы в жидкий азот, что выглядит абсолютно невероятным.

См. также[править | править вики-текст]

Примечания[править | править вики-текст]

  1. P. J. Crutzen, J.W. Birks The atmosphere after a nuclear war: Twilight at noon. Ambio 11, 114 (1982).
  2. 1 2 R. P. Turco et. al. Nuclear winter—Global consequences of multiple nuclear-explosions. Science 222, 1283 (1983). DOI:10.1126/science.222.4630.1283
  3. J. E. Penner et al. Smoke-plume distributions above large-scale fires—Implications for simulations of nuclearwinter. J ClimateApplMeteorol 25, 1434 (1986).
  4. S. J. Ghan et. al. Climatic response to large atmospheric smoke injections — sensitivity studies with a tropospheric general-circulation model. J Geophys Res Atmos 93, 315 (1988).
  5. Загрязнение воздуха в Китае напоминает ядерную зиму. // inosmi.ru. Проверено 28 марта 2014.
  6. Александров В. В. Об одном вычислительном эксперименте, моделирующем последствия ядерной войны. Вычислительная математика и математическая физика, 1984, т. 24, стр. 140—144
  7. Стенчиков Г. Л. Климатические последствия ядерной войны: выбросы и распространение оптически активных примесей в атмосфере. Сообщения по прикладной математике. М., Вычислительный центр АН СССР, 1985, 32 c.
  8. В. П. Пархоменко, Г. Л. Стенчиков Математическое моделирование климата. М.: Знание, 1986, 4
  9. Н. Моисеев Экология человечества глазами математика. М.: Молодая гвардия, 1988. Изучение биосферы с помощью машинных экспериментов. Оценка последвствий ядерной войны.
  10. Laurence Badash A Nuclear Winter’s Tale Massachusetts Institute of Technology, 2009 ISBN 0-262-01272-3 ISBN 978-0-262-01272-0  (англ.)
  11. Alan Robock Time to Bury a Dangerous Legacy — Part II Climatic catastrophe would follow regional nuclear conflict A Publication of Yale Center for the Study of Globalization: «YaleGlobal», 17 March 2008  (англ.)
  12. Owen B. Toon, Alan Robock and Richard P. Turco «Экологические последствия ядерной войны» // Physics Today. 2008. (перевод на русский)
  13. Моделирование распространения загрязнений над большим пожаром в атмосфере, Соросовский образовательный журнал, T.7, № 4, c. 122—127 (2001), С. В. Утюжников
  14. Numerical and experimental simulation of large-scale conflagrations in the stratified atmosphere, American Physical Society, 1996
  15. Nuclear Testing Chronology  (англ.)
  16. http://www.pojar01.ru/11/PROCESS_GOR/ST/ST_ABDURAG_YADERN/text2.html И. М. Абдурагимов "О несостоятельности концепции «ядерной ночи и „ядерной зимы“ вследствие пожаров после ядерного поражения»
  17.  (англ.) Mount Pinatubo as a Test of Climate Feedback Mechanisms, Alan Robock, Department of Environmental Sciences, Rutgers University
  18. http://www.climatechange2013.org/images/report/WG1AR5_Chapter08_FINAL.pdf
  19. 3.4.4.2 Surface Radiation // Climate Change 2007: Working Group I: The Physical Science Basis. — 2007. — ISBN 978-0-521-88009-1.
  20. (2000) «Global warming in the twenty-first century: an alternative scenario». Proc. Natl. Acad. Sci. U.S.A. 97 (18): 9875–80. DOI:10.1073/pnas.170278997. PMID 10944197. Bibcode2000PNAS...97.9875H.
  21. (2008) «Global and regional climate changes due to black carbon». Nature Geoscience 1 (4): 221–227. DOI:10.1038/ngeo156. Bibcode2008NatGe...1..221R.
  22. Ramanathan V., Chung C., Kim D., Bettge T., Buja L., Kiehl J. T., Washington W. M., Fu Q., Sikka D. R., Wild M. Atmospheric brown clouds: impacts on South Asian climate and hydrological cycle. (англ.) // Proceedings of the National Academy of Sciences of the United States of America. — 2005. — Vol. 102, no. 15. — P. 5326—5333. — DOI:10.1073/pnas.0500656102. — PMID 15749818. исправить
  23. Ramanathan, V., et al. Report Summary (PDF). Atmospheric Brown Clouds: Regional Assessment Report with Focus on Asia. United Nations Environment Programme (2008).
  24. Mastering the Problem of Environmental Quality: an interview with Dr. S. Fred Singer | Heartlander Magazine

Ссылки[править | править вики-текст]