Ядро Джексона

Материал из Википедии — свободной энциклопедии
Перейти к навигации Перейти к поиску

Ядром Джексона в теории приближений называется -периодическая функция, задающаяся формулой:

Названо именем учёного, занимавшегося теорией приближений и тригонометрических полиномов — Данхэма Джексона[en].

Данная функция является ядром, свёртка с которым даёт частичную сумму ряда Фурье.

Константа ядра Джексона[править | править код]

Константа определяется из соотношения и равна

Доказательство[править | править код]

Используем равенство Парсеваля для случая пространства L2:

Если , то верно следующее тождество:

Необходимо подставить в это равенство

Предварительно необходимо написать выражение для , используя ядро Фейера и ядро Дирихле:


Из этого следует, что


Поменяв местами две суммы и применив соответствующее преобразование для индексов, получим:


Далее, очевидно, что коэффициенты полученного тригонометрического полинома будут коэффициентами Фурье его суммы, то есть

Остаётся лишь подставить эти коэффициенты в соответствующее выражение для интеграла:



А значит, подставив в основное тождество для ядра Джексона, можно получить выражение для константы:

Таким образом, утверждение о константе доказано.

См. также[править | править код]

Литература[править | править код]