Система счисления

Материал из Википедии — свободной энциклопедии
Перейти к: навигация, поиск
Системы счисления в культуре
Индо-арабская
Арабская
Тамильская
Бирманская
Кхмерская
Лаосская
Монгольская
Тайская
Восточноазиатские
Китайская
Японская
Сучжоу
Корейская
Вьетнамская
Счётные палочки
Алфавитные
Абджадия
Армянская
Ариабхата
Кириллическая
Греческая
Эфиопская
Еврейская
Акшара-санкхья
Другие
Вавилонская
Египетская
Этрусская
Римская
Дунайская
Аттическая
Кипу
Майяская
Эгейская
Символы КППУ
Позиционные
2, 3, 4, 5, 6, 8, 10, 12, 16, 20, 60
Нега-позиционная
Симметричная
Смешанные системы
Фибоначчиева
Непозиционные
Единичная (унарная)

Система счисле́ния (англ. numeral system или system of numeration) — символический метод записи чисел, представление чисел с помощью письменных знаков.

Система счисления:

Системы счисления подразделяются на:

Позиционные системы счисления[править | править вики-текст]

В позиционных системах счисления один и тот же числовой знак (цифра) в записи числа имеет различные значения в зависимости от того места (разряда), где он расположен. Изобретение позиционной нумерации, основанной на поместном значении цифр, приписывается шумерам и вавилонянам; развита была такая нумерация индусами и имела неоценимые последствия в истории человеческой цивилизации. К числу таких систем относится современная десятичная система счисления, возникновение которой связано со счётом на пальцах. В средневековой Европе она появилась через итальянских купцов, в свою очередь заимствовавших её у мусульман.

Под позиционной системой счисления обычно понимается b-ричная система счисления, которая определяется целым числом b>1, называемым основанием системы счисления. Целое число без знака x в b-ричной системе счисления представляется в виде конечной линейной комбинации степеней числа b:

x = \sum_{k=0}^{n-1} a_k b^k, где a_k — это целые числа, называемые цифрами, удовлетворяющие неравенству 0 \leq a_k \leq (b-1).

Каждая степень b^k в такой записи называется весовым коэффициентом разряда. Старшинство разрядов и соответствующих им цифр определяется значением показателя k (номером разряда). Обычно в записи ненулевых чисел начальные нули опускаются.

Если не возникает разночтений (например, когда все цифры представляются в виде уникальных письменных знаков), число x записывают в виде последовательности его b-ричных цифр, перечисляемых по убыванию старшинства разрядов слева направо:

x = a_{n-1} a_{n-2}\dots a_0.

Например, число сто три представляется в десятичной системе счисления в виде:

 103 = 1 \cdot 10^{2} + 0 \cdot 10^{1} + 3 \cdot 10^{0}.

Наиболее употребляемыми в настоящее время позиционными системами являются:

В позиционных системах чем больше основание системы, тем меньшее количество разрядов (то есть записываемых цифр) требуется при записи числа.

Смешанные системы счисления[править | править вики-текст]

Смешанная система счисления является обобщением b-ричной системы счисления и также зачастую относится к позиционным системам счисления. Основанием смешанной системы счисления является возрастающая последовательность чисел \{b_k\}_{k=0}^{\infty}, и каждое число x в ней представляется как линейная комбинация:

x = \sum_{k=0}^{n-1} a_{k}b_k, где на коэффициенты a_{k}, называемые как и прежде цифрами, накладываются некоторые ограничения.

Записью числа x в смешанной системе счисления называется перечисление его цифр в порядке уменьшения индекса k, начиная с первого ненулевого.

В зависимости от вида b_k как функции от k смешанные системы счисления могут быть степенными, показательными и т. п. Когда b_k=b^k для некоторого b, смешанная система счисления совпадает с показательной b-ричной системой счисления.

Наиболее известным примером смешанной системы счисления является представление времени в виде количества суток, часов, минут и секунд. При этом величина «d дней, h часов, m минут, s секунд» соответствует значению d\cdot 24\cdot 60\cdot 60 + h\cdot 60\cdot 60 + m\cdot 60 + s секунд.

Факториальная система счисления[править | править вики-текст]

В факториальной системе счисления основаниями являются последовательность факториалов b_k=k!, и каждое натуральное число x представляется в виде:

x = \sum_{k=1}^n d_k k!, где 0\leq d_k \leq k.

Факториальная система счисления используется при декодировании перестановок списками инверсий: имея номер перестановки, можно воспроизвести её саму следующим образом: число, на единицу меньшее номера (нумерация начинается с нуля) записывается в факториальной системе счисления, при этом коэффициент при числе i! будет обозначать число инверсий для элемента i+1 в том множестве, в котором производятся перестановки (число элементов меньших i+1, но стоящих правее его в искомой перестановке)

Пример: рассмотрим множество перестановок из 5 элементов, всего их 5! = 120 (от перестановки с номером 0 — (1,2,3,4,5) до перестановки с номером 119 — (5,4,3,2,1)), найдём 101-ую перестановку: 100 = 4!*4 + 3!*0 + 2!*2 + 1!*0 = 96 + 4; положим ti — коэффициент при числе i!, тогда t4 = 4, t3 = 0, t2 = 2, t1 = 0 , тогда: число элементов меньших 5, но стоящих правее равно 4; число элементов меньших 4, но стоящих правее равно 0; число элементов меньших 3, но стоящих правее равно 2; число элементов меньших 2, но стоящих правее равно 0 (последний элемент в перестановке «ставится» на единственное оставшееся место) — таким образом, 101-я перестановка будет иметь вид: (5,3,1,2,4) Проверка данного метода может быть осуществлена путём непосредственного подсчёта инверсий для каждого элемента перестановки.

Фибоначчиева система счисления[править | править вики-текст]

Фибоначчиева система счисления основывается на числах Фибоначчи. Каждое натуральное число n в ней представляется в виде:

n = \sum_{k} f_k F_k, где F_k — числа Фибоначчи, f_k\in\{0,1\}, при этом в коэффициентах f_k есть конечное количество единиц и не встречаются две единицы подряд.

Непозиционные системы счисления[править | править вики-текст]

В непозиционных системах счисления величина, которую обозначает цифра, не зависит от положения в числе. При этом система может накладывать ограничения на положение цифр, например, чтобы они были расположены в порядке убывания.

Биномиальная система счисления[править | править вики-текст]

В биномиальной системе счисления (англ.) число x представляется в виде суммы биномиальных коэффициентов:

x = \sum_{k=1}^n {c_k\choose k}, где 0\leq c_1 < c_2 < \dots < c_n.

При всяком фиксированном значении n каждое натуральное число представляется уникальным образом.[1]

Система остаточных классов (СОК)[править | править вики-текст]

Представление числа в системе остаточных классов основано на понятии вычета и китайской теореме об остатках. СОК определяется набором попарно взаимно простых модулей (m_1, m_2, \dots, m_n) с произведением M=m_1\cdot m_2\cdot \dots\cdot m_n так, что каждому целому числу x из отрезка [0,M-1] ставится в соответствие набор вычетов (x_1, x_2, \dots, x_n), где

x \equiv x_1 \pmod{m_1};
x \equiv x_2 \pmod{m_2};
x \equiv x_n \pmod{m_n}.

При этом китайская теорема об остатках гарантирует однозначность представления для чисел из отрезка [0,M-1].

В СОК арифметические операции (сложение, вычитание, умножение, деление) выполняются покомпонентно, если про результат известно, что он является целочисленным и также лежит в [0,M-1].

Недостатками СОК является возможность представления только ограниченного количества чисел, а также отсутствие эффективных алгоритмов для сравнения чисел, представленых в СОК. Сравнение обычно осуществляется через перевод аргументов из СОК в смешанную систему счисления по основаниям (m_1, m_1\cdot m_2, \dots, m_1\cdot m_2\cdot\dots\cdot m_{n-1}).

Система счисления Штерна-Броко[править | править вики-текст]

Система счисления Штерна-Броко — способ записи положительных рациональных чисел, основанный на дереве Штерна-Броко.

Системы счисления разных народов[править | править вики-текст]

Единичная система счисления[править | править вики-текст]

По-видимому, хронологически первая система счисления каждого народа, овладевшего счётом. Натуральное число изображается путём повторения одного и того же знака (чёрточки или точки). Например, чтобы изобразить число 26, нужно провести 26 чёрточек (или сделать 26 засечек на кости, камне и т. д.). Впоследствии, ради удобства восприятия больших чисел, эти знаки группируются по три или по пять. Затем равнообъёмные группы знаков начинают заменяться каким-либо новым знаком — так возникают прообразы будущих цифр.

Пятеричная система счисления (Счёт на пятки́)[править | править вики-текст]

Существовал в России. Применялся в народе как минимум до конца XVIII — начала XIX вв. Так у Ершова (в «Коньке-горбунке») Иван считает в пятеричной (на пятки́), а более просвещённый царь — переводит уже в десятеричную.

Древнеегипетская система счисления[править | править вики-текст]

Древнеегипетская десятичная непозиционная система счисления возникла во второй половине третьего тысячелетия до н. э. Для обозначения чисел 0, 1, 10, 102, 103, 104, 105, 106, 107 использовались специальные цифры. Числа в египетской системе счисления записывались как комбинации этих цифр, в которых каждая из цифр повторялась не более девяти раз. Значение числа равно простой сумме значений цифр, участвующих в его записи.[2]

Вавилонская система счисления[править | править вики-текст]

Алфавитные системы счисления[править | править вики-текст]

Алфавитными системами счисления пользовались древние армяне, грузины, греки (ионическая система счисления), арабы (абджадия), евреи (см. гематрия) и другие народы Ближнего Востока. В славянских богослужебных книгах греческая алфавитная система была переведена на буквы кириллицы.[2]

Еврейская система счисления[править | править вики-текст]

Еврейская система счисления в качестве цифр использует 22 буквы еврейского алфавита. Каждая буква имеет своё числовое значение от 1 до 400 (см. так же Гематрия). Ноль отсутствует. Цифры, записанные таким образом, наиболее часто можно встретить в нумерации лет по иудейскому календарю.

Греческая система счисления[править | править вики-текст]

Греческая система счисления, также известная как ионийская или новогреческая — непозиционная система счисления. Алфавитная запись чисел, в которой в качестве символов для счёта, употребляют буквы классического греческого алфавита, а также некоторые буквы доклассической эпохи, такие как ϛ (стигма), ϟ (коппа) и ϡ (сампи).

Римская система счисления[править | править вики-текст]

Каноническим примером почти непозиционной системы счисления является римская, в которой в качестве цифр используются латинские буквы:
I обозначает 1,
V — 5,
X — 10,
L — 50,
C — 100,
D — 500,
M — 1000

Например, II = 1 + 1 = 2
здесь символ I обозначает 1 независимо от места в числе.

На самом деле, римская система не является полностью непозиционной, так как меньшая цифра, идущая перед большей, вычитается из неё, например:

IV = 4, в то время как:
VI = 6

Система счисления майя[править | править вики-текст]

Майя использовали 20-ричную систему счисления за одним исключением: во втором разряде было не 20, а 18 ступеней, то есть за числом (17)(19) сразу следовало число (1)(0)(0). Это было сделано для облегчения расчётов календарного цикла, поскольку (1)(0)(0) = 360 примерно равно числу дней в солнечном году.

Для записи основными знаками были точки (единицы) и отрезки (пятёрки).

Кипу инков[править | править вики-текст]

Прообразом баз данных, широко использовавшихся в Центральных Андах (Перу, Боливия) в государственных и общественных целях в I—II тысячелетии н. э., была узелковая письменность Инков — кипу, состоявшая как из числовых записей десятичной системы[3], так и не числовых записей в двоичной системе кодирования[4]. В кипу применялись первичные и дополнительные ключи, позиционные числа, кодирование цветом и образование серий повторяющихся данных[5]. Кипу впервые в истории человечества использовалось для применения такого способа ведения бухгалтерского учёта как двойная запись[6].

См. также[править | править вики-текст]

Примечания[править | править вики-текст]

  1. Ландо С. К. Глава 1. Задача 1.13 // Лекции о производящих функциях. — 3-е изд., испр.. — М.: МЦНМО, 2007. — 144 с. — ISBN 978-5-94057-042-4.
  2. 1 2 Системы счисления. Как считали в Древней Руси. Алфавитные системы счисления.
  3. Ordish George, Hyams, Edward. The last of the Incas: the rise and fall of an American empire. — New York: Barnes & Noble, 1996. — С. 80. — ISBN 0-88029-595-3.
  4. Experts 'decipher' Inca strings. Архивировано из первоисточника 18 августа 2011.
  5. Carlos Radicati di Primeglio, Gary Urton. Estudios sobre los quipus. - стр.49.
  6. Dale Buckmaster (1974). «The Incan Quipu and the Jacobsen Hypothesis». Journal of Accounting Research 12 (1): 178-181. Проверено 2009-12-24.

Ссылки[править | править вики-текст]