Экспоненциальная запись

Материал из Википедии — свободной энциклопедии
Перейти к навигации Перейти к поиску

Экспоненциа́льная за́пись — представление действительных чисел в виде мантиссы и порядка. Удобна при представлении очень больших и очень малых чисел, а также для унификации их написания.

, где

Примеры:

1 000 000 (один миллион): ; N = 1 000 000, M = 1,0, n = 10, p = 6.

1 201 000 (один миллион двести одна тысяча): ; N = 1 201 000, M = 1,201, n = 10, p = 6.

−1 246 145 000 (минус один миллиард двести сорок шесть миллионов сто сорок пять тысяч): ; N = −1 246 145 000, M = −1,246145, n = 10, p = 9.

0,000001 (одна миллионная):; N = 0,000001, M = 1,0, n = 10, p = −6.

0,000000231 (двести тридцать одна миллиардная):; N = 0,000000231, M = 2,31, n = 10, p = −7.

Нормализованная запись[править | править код]

Любое данное число может быть записано в виде многими путями; например 350 может быть записано как или .

В нормализованной научной записи, порядок выбирается такой, чтобы абсолютная величина оставалась не меньше единицы, но строго меньше десяти (). Например, 350 записывается как . Этот вид записи, называемый также стандартным видом, позволяет легко сравнивать два числа. Кроме того, он удобен для десятичного логарифмирования (целая часть логарифма, записанного «в искусственной форме», равна порядку числа, дробная часть логарифма определяется из таблицы только по мантиссе), что было крайне важным до массового распространения калькуляторов в 1970-х годах.

В инженерной нормализованной записи (в том числе в информатике), мантисса обычно выбирается в пределах : .

В некоторых калькуляторах, как опция, может быть использована запись с мантиссой и с порядком, кратным 3, так, например, записывается как . Такая запись проста для чтения ( легче прочесть, как «640 миллионов», чем ) и удобна для выражения физических величин в единицах измерения с десятичными приставками: кило-, микро-, тера- и так далее.

Экспоненциальная запись числа в компьютере[править | править код]

Представление чисел в приложениях[править | править код]

Основная масса прикладных программ для компьютера обеспечивает представление чисел в удобной для восприятия человеком форме, т.е. в десятичной системе счисления.

На компьютере (в частности в языках программирования высокого уровня) числа в экспоненциальном формате (его ещё называют научным) принято записывать в виде MEp, где:

M — мантисса,

E (от англ. «exponent») — буква «E», означающая «*10^» («…умножить на десять в степени…»),

p — порядок.

Например:

(элементарный заряд в Кл);

(Постоянная Больцмана в Дж/К);

(число Авогадро).

В программировании часто используют символ «+» для неотрицательного порядка и ведущие нули, а в качестве десятичного разделителя — точку:

.

Для улучшения читаемости иногда используют строчную букву e:

ГОСТ 10859-64 "Машины вычислительные. Коды алфавитно-цифровые для перфокарт и перфолент" (англ.) вводил специальный символ для экспоненциальной записи числа "⏨", представляющий собой число 10, написанное мелким шрифтом на уровне строки. Такая запись должна была использоваться в АЛГОЛе. Этот символ включён в Unicode 5.2 с кодом U+23E8 "Decimal Exponent Symbol"[1]. Таким образом, например, современное значение скорости света могло быть записано как 2.99792458⏨+08 м/с.

Внутренний формат представления чисел[править | править код]

Внутренний формат представления вещественных чисел в компьютере тоже является экспоненциальным, но основанием степени выбрано число 2 вместо 10. Это связано с тем, что все данные в компьютере представлены в двоичной форме (битами). Под число отводится определённое количество компьютерной памяти (часто это 4 или 8 байт). Там содержится следующая информация.

  • Знаковый бит (он обычно занимает старшее место), который указывает знак числа. Установленный бит говорит о том, что число отрицательное (исключение может составлять число ноль — иногда он тоже может иметь установленный знаковый бит).
  • Порядок — целое число, которое задаёт нужную степень двойки. Обычно это не истинная величина порядка, а сдвинутая на некоторую константу таким образом, чтобы число было неотрицательным. Так, наименьший возможный порядок (он отрицательный) представлен числом 0.
  • Мантисса (обычно за исключением старшего бита, который всегда установлен в нормализованном числе).

Более подробно форматы представления чисел описаны стандартом IEEE 754-2008.

Примечания[править | править код]

Ссылки[править | править код]