ARIMA

Материал из Википедии — свободной энциклопедии
Перейти к: навигация, поиск

ARIMA (англ. autoregressive integrated moving average, иногда модель Бокса — Дженкинса, методология Бокса — Дженкинса) — интегрированная модель авторегрессии — скользящего среднего — модель и методология анализа временных рядов. Является расширением моделей ARMA для нестационарных временных рядов, которые можно сделать стационарными взятием разностей некоторого порядка от исходного временного ряда (так называемые интегрированные или разностно-стационарные временные ряды). Модель означает, что разности временного ряда порядка подчиняются модели .

Формальное определение модели[править | править вики-текст]

Модель для нестационарного временного ряда имеет вид:

где - стационарный временной ряд;

- параметры модели.
- оператор разности временного ряда порядка d (последовательное взятие d раз разностей первого порядка - сначала от временного ряда, затем от полученных разностей первого порядка, затем от второго порядка и т.д.)

Также данная модель интерпретируется как - модель с единичными корнями. При имеем обычные -модели.

Операторное представление[править | править вики-текст]

С помощью лагового оператора данные модели можно записать следующим образом:

,

или сокращённо:

.

где

Пример[править | править вики-текст]

Простейшим примером ARIMA-модели является известная модель случайного блуждания:

Следовательно это модель .

Интегрированные временные ряды[править | править вики-текст]

ARIMA-модели позволяют моделировать интегрированные или разностно-стационарные временные ряды (DS-ряды, diference stationary).

Временной ряд называется интегрированным порядка (обычно пишут ), если разности ряда порядка , то есть являются стационарными, в то время как разности меньшего порядка (включая нулевого порядка, то есть сам временной ряд) не являются стационарными относительно некоторого тренда рядами (TS-рядами, trend stationary). В частности  — это стационарный процесс.

Порядок интегрированности временного ряда и есть порядок модели .

Методология ARIMA (Бокса — Дженкинса)[править | править вики-текст]

Подход ARIMA к временным рядам заключается в том, что в первую очередь оценивается стационарность ряда. Различными тестами выявляются наличие единичных корней и порядок интегрированности временного ряда (обычно ограничиваются первым или вторым порядком). Далее при необходимости (если порядок интегрированности больше нуля) ряд преобразуется взятием разности соответствующего порядка и уже для преобразованной модели строится некоторая ARMA-модель, поскольку предполагается, что полученный процесс является стационарным, в отличие от исходного нестационарного процесса (разностно-стационарного или интегрированного процесса порядка ).

Модели ARFIMA[править | править вики-текст]

Теоретически порядок интегрированности временного ряда может быть не целой величиной, а дробной. В этом случае говорят о дробно-интегрированых моделях авторегрессии — скользящего среднего (ARFIMA, AutoRegressive Fractional Integrated Moving Average). Для понимания сущности дробного интегрирования необходимо рассмотреть разложение оператора взятия -ой разности в степенной ряд по степеням лагового оператора для дробных (разложение в ряд Тейлора):

.

Литература[править | править вики-текст]

  • Айвазян С.А. Прикладная статистика. Основы эконометрики. Том 2. — М.: Юнити-Дана, 2001. — 432 с. — ISBN 5-238-00305-6.
  • Магнус Я.Р., Катышев П.К., Пересецкий А.А. Эконометрика. Начальный курс. — М.: Дело, 2007. — 504 с. — ISBN 978-5-7749-0473-0.
  • Эконометрика. Учебник / Под ред. Елисеевой И.И. — 2-е изд. — М.: Финансы и статистика, 2006. — 576 с. — ISBN 5-279-02786-3.