Спутниковая система навигации

Материал из Википедии — свободной энциклопедии
(перенаправлено с «GNSS»)
Перейти к: навигация, поиск
Спутник «Navstar-GPS».

Спу́тниковая систе́ма навига́ции — система, предназначенная для определения местоположения (географических координат и высоты) наземных, водных и воздушных объектов. Спутниковые системы навигации также позволяют получить скорости и направления движения приёмника сигнала. Кроме того могут использоваться для получения точного времени. Такие системы состоят из космического оборудования и наземного сегмента (систем управления). В настоящее время только две спутниковых системы обеспечивают полное и бесперебойное покрытие земного шара — GPS и ГЛОНАСС.

Принцип работы[править | править вики-текст]

Принцип работы спутниковых систем навигации основан на измерении расстояния от антенны на объекте (координаты которого необходимо получить) до спутников, положение которых известно с большой точностью. Таблица положений всех спутников называется альманахом, которым должен располагать любой спутниковый приёмник до начала измерений. Обычно приёмник сохраняет альманах в памяти со времени последнего выключения и если он не устарел — мгновенно использует его. Каждый спутник передаёт в своём сигнале весь альманах. Таким образом, зная расстояния до нескольких спутников системы, с помощью обычных геометрических построений, на основе альманаха, можно вычислить положение объекта в пространстве.

Метод измерения расстояния от спутника до антенны приёмника основан на определённости скорости распространения радиоволн. Для осуществления возможности измерения времени распространяемого радиосигнала каждый спутник навигационной системы излучает сигналы точного времени, используя точно синхронизированные с системным временем атомные часы. При работе спутникового приёмника его часы синхронизируются с системным временем, и при дальнейшем приёме сигналов вычисляется задержка между временем излучения, содержащимся в самом сигнале, и временем приёма сигнала. Располагая этой информацией, навигационный приёмник вычисляет координаты антенны. Все остальные параметры движения (скорость, курс, пройденное расстояние) вычисляются на основе измерения времени, которое объект затратил на перемещение между двумя или более точками с определёнными координатами.

Основные элементы[править | править вики-текст]

Основные элементы спутниковой системы навигации:

  • Орбитальная группировка, состоящая из нескольких (от 2 до 30) спутников, излучающих специальные радиосигналы;
  • Наземная система управления и контроля (наземный сегмент), включающая блоки измерения текущего положения спутников и передачи на них полученной информации для корректировки информации об орбитах;
  • Аппаратура потребителя спутниковых навигационных систем («спутниковые навигаторы»), используемое для определения координат;
  • Опционально: наземная система радиомаяков, позволяющая значительно повысить точность определения координат.
  • Опционально: информационная радиосистема для передачи пользователям поправок, позволяющих значительно повысить точность определения координат.

Обзор спутниковых систем навигации[править | править вики-текст]

Исторические системы[править | править вики-текст]

  • Transit --- первая в мире спутниковая навигационная система, США, 1960-е — 1996
  • Цикло́н --- первая спутниковая система навигации в СССР

Действующие глобальные спутниковые системы[править | править вики-текст]

GPS[править | править вики-текст]

Принадлежит министерству обороны США. Этот факт, по мнению некоторых государств, является её главным недостатком. Устройства, поддерживающие навигацию по GPS, являются самыми распространёнными в мире. Также известна под более ранним названием NAVSTAR.

ГЛОНАСС[править | править вики-текст]

Принадлежит министерству обороны РФ. Разработка системы официально началась в 1976 г, полное развёртывание системы завершилось в 1995 г. После 1996 года спутниковая группировка сокращалась и к 2002 году пришла в упадок. Была восстановлена к концу 2011 года. В настоящее время на орбите находится 27 спутников, из которых 22 используется по назначению[1]. К 2025 году предполагается глубокая модернизация системы.

Строящиеся глобальные спутниковые системы[править | править вики-текст]

Бэйдоу (BeiDou)[править | править вики-текст]

Развёртываемая Китаем местная система GNSS, основанная на геостационарных спутниках. По состоянию на 2015 год система имела 14 работающих спутников: 5 на геостационарных орбитах, 5 — на геосинхронных и 4 — на средних околоземных.

Реализация программы началась в 2000 году. Первый спутник вышел на орбиту в 2007 г. В декабре 2012 года система «Бэйдоу» стала доступна пользователям Азиатско-Тихоокеанского региона, к этому времени на орбиту Земли было выведено 16 навигационных спутников, из них по предназначению использовались 11[2]. Предполагается, что к 2020 году, когда количество спутников будет увеличено до 35, и система «Бэйдоу» сможет работать как глобальная.

Galileo[править | править вики-текст]

Европейская система, находящаяся на этапе создания спутниковой группировки. По состоянию на январь 2016 года на орбите находится 12 спутников, два из которых ещё не введены в строй. Планируется полностью развернуть спутниковую группировку к 2020 году[3].

Строящиеся региональные спутниковые системы[править | править вики-текст]

IRNSS[править | править вики-текст]

Индийская навигационная спутниковая система, в состоянии разработки. Предполагается для использования только в Индии. Первый спутник был запущен в 2008 году. Общее количество спутников системы IRNSS — 7.

QZSS[править | править вики-текст]

Японская квази-зенитная спутниковая система (Quasi-Zenith Satellite System, QZSS) была задумана в 2002 г. как коммерческая система с набором услуг для подвижной связи, вещания и широкого использования для навигации в Японии и соседних районах Юго-Восточной Азии. Первый QZSS-спутник был запущен в 2010 г. Предполагается создание группировки из трёх спутников, находящихся на геосинхронных орбитах, а также собственной системы дифференциальной коррекции.

DORIS[править | править вики-текст]

Doppler Orbitography and Radio-positioning Integrated by Satellite (DORIS) — французская навигационная система. Принцип работы системы связан с применением эффекта Допплера. В отличие от других спутниковых навигационных систем основана на системе стационарных наземных передатчиков, приёмники расположены на спутниках. После определения точного положения спутника система может установить точные координаты и высоту маяка на поверхности Земли. Первоначально предназначалась для наблюдения за океанами и дрейфом материков.

Применение систем навигации[править | править вики-текст]

Кроме навигации, координаты, получаемые благодаря спутниковым системам, используются в следующих отраслях:

  • Геодезия: с помощью систем навигации определяются точные координаты точек
  • Картография: системы навигации используется в гражданской и военной картографии
  • Навигация: с применением систем навигации осуществляется как морская, так и дорожная навигация
  • Спутниковый мониторинг транспорта: с помощью систем навигации ведётся мониторинг за положением, скоростью автомобилей, контроль за их движением
  • Сотовая связь: первые мобильные телефоны с GPS появились в 90-х годах. В некоторых странах (например, США) это используется для оперативного определения местонахождения человека, звонящего 911. В России в 2010 году начата реализация аналогичного проекта — Эра-ГЛОНАСС.
  • Тектоника, Тектоника плит: с помощью систем навигации ведутся наблюдения движений и колебаний плит
  • Активный отдых: существуют различные игры, где применяются системы навигации, например, Геокэшинг и др.
  • Геотегинг: информация, например фотографии «привязываются» к координатам благодаря встроенным или внешним GPS-приёмникам

Технические детали работы систем GPS и ГЛОНАСС[править | править вики-текст]

  • Обе системы создавались для военных применений, однако затем получили двойное назначение — военное и гражданское[4][5]. Длительное время, до мая 2000 года в GPS для гражданского применения был доступен лишь сигнал с стандартной точностью определения координат (Standard Positioning Service, с горизонтальной точностью порядка 100 метров), тогда как для военных применений использовался сигнал высокой точности (Precise Positioning Systems с точностью около 22 метров по горизонтали и 27 метров по вертикали)[5]. Для ограничения доступа к точной навигационной информации в GPS вводились специальные случайные помехи, которые могли быть скорректированы после получения поправок от соответствующего военного ведомства[источник не указан 257 дней] (США для GPS и России для ГЛОНАСС). В настоящее время эти помехи отменены, и точный сигнал доступен гражданским приёмникам, однако в случае соответствующего решения стран-владельцев ограничения точности гражданских сигналов могут быть вновь введены на большинстве спутников.
  • Спутники GPS располагаются в шести плоскостях на высоте примерно 20 180 км от поверхности планеты. Спутники ГЛОНАСС (шифр «Ураган») находятся в трёх плоскостях на высоте примерно 19 100 км. Номинальное количество спутников в обеих системах — 24. Группировка GPS полностью укомплектована в апреле 1994 и с тех пор поддерживается, группировка ГЛОНАСС была полностью развёрнута в декабре 1995, но с тех пор значительно деградировала. В 2011 году система ГЛОНАСС полностью восстановлена, количество спутников в группировке достигло 24. В системе появился орбитальный резерв.
  • Обе системы используют сигналы на основе т. н. псевдошумовых последовательностей[en], применение которых придаёт им высокую помехозащищённость и надёжность при невысокой мощности излучения передатчиков.
  • В соответствии с назначением, в каждой системе есть две базовые частоты — L1 (стандартной точности) и L2 (высокой точности). Для GPS L1=1575,42 МГц и L2=1227,6 МГц. В ГЛОНАСС используется частотное разделение сигналов, то есть каждый спутник работает на своей частоте и, соответственно, L1 находится в пределах от 1602,56 до 1615,5 МГц и L2 от 1246,43 до 1256,53.
  • Каждый спутник системы, помимо основной информации, передаёт также вспомогательную, необходимую для непрерывной работы приёмного оборудования. В эту категорию входит полный альманах всей спутниковой группировки, передаваемый последовательно в течение нескольких минут. Таким образом, старт приёмного устройства может быть достаточно быстрым, если он содержит актуальный альманах (порядка 1-й минуты) — это называется «тёплый старт», но может занять и до 15-ти минут, если приёмник вынужден получать полный альманах — т. н. «холодный старт». Необходимость в «холодном старте» возникает обычно при первом включении приёмника, либо если он долго не использовался.

Основные характеристики систем навигационных спутников[править | править вики-текст]

параметр, способ СРНС ГЛОНАСС GPS NAVSTAR TEN GALILEO BDS COMPASS
Число НС (резерв) 24 (3) 24 (3) 27 (3) 30 (5)
Число орбитальных плоскостей 3 6 3 нет данных
Число НС в орбитальной плоскости 8 4 9 нет данных
Тип орбит Круговая (e=0±0.01) Круговая Круговая Круговая
Высота орбиты, КМ 19100 20183 23224 21500
Наклонение орбиты, градусы 64.8±0.3 ~55 (63) 56 ~55
Номинальный период обращения по среднему солнечному времени 11 ч 15 мин 44 ± 5 с ~11 ч 58 мин 14 ч 4 мин. и 42 с. нет данных
Способ разделения сигналов НС Кодово-частотный (кодовый на испытаниях) Кодовый Кодово-частотный нет данных
Несущие частоты радиосигналов, МГц L1=1602.5625…1615.5 L2=1246.4375…1256.5 L1=1575.42 L2=1227.60 L5=1176.45 E1=1575.42 E5=1191.795 E5A=1176.46 E5B=1207.14 E6=12787.75 E1=1575.42 E5=1191.795 E5A=1176.46 E5B=1207.14 E6=12787.75
Период повторения дальномерного кода (или его сегмента) 1 мс 1 мс (С/А-код) нет данных нет данных
Тип дальномерного кода М-последовательность (СТ-код 511 зн.) Код Голда (С/А-код 1023 зн.) М-последовательность нет данных
Тактовая частота дальномерного кода, МГц 0.511 1.023 (С/А-код) 10.23 (P,Y-код) Е1=1.023 E5=10.23 E6=5.115 нет данных
Скорость передачи цифровой информации(соответственно СИ- и D- код) 50 зн/с (50Гц) 50 зн/с (50Гц) 25, 50, 125, 500, 100 Гц нет данных
Длительность суперкадра, мин 2.5 12.5 5 нет данных
Число кадров в суперкадре 5 25 нет данных нет данных
Число строк в кадре 15 5 нет данных нет данных
Система отсчета времени UTC (SU) UTC (USNO) UTC (GST) UTC (-)
Система отсчета координат ПЗ-90/ПЗ90.2 WGS-84 ETRF-00 нет данных
Тип эфемирид Геоцентрические координаты и их производные Модифицированные кеплеровы элементы Модифицированные кеплеровы элементы нет данных
Сектор излучения от направления на центр земли ±19 в 0 L1=±21 в 0 L2=±23.5 в 0 нет данных нет данных
Сектор Земли ±14.1 в 0 ±13.5 в 0 нет данных нет данных

Дифференциальное измерение[править | править вики-текст]

Отдельные модели спутниковых приёмников позволяют производить т. н. «дифференциальное измерение» расстояний между двумя точками с большой точностью (сантиметры). Для этого измеряется положение навигатора в двух точках с небольшим промежутком времени. При этом, хотя каждое такое измерение имеет погрешность, равную 10-15 метров без наземной системы корректировки и 10-50 см с такой системой, измеренное расстояние имеет погрешность намного меньшую, так как факторы, мешающие измерению (погрешность орбит спутников, неоднородность атмосферы в данном месте Земли и т. д.) в этом случае взаимно вычитаются.

Кроме того, есть несколько систем, которые посылают потребителю уточняющую информацию («дифференциальную поправку к координатам»), позволяющую повысить точность измерения координат приёмника до 10 сантиметров. Дифференциальная поправка пересылается либо с геостационарных спутников, либо с наземных базовых станций, может быть платной (расшифровка сигнала возможна только одним определённым приёмником после оплаты «подписки на услугу») или бесплатной.

На 2009 год имелись следующие бесплатные системы предоставления поправок: американская система WAAS (GPS), европейская система EGNOS (Galileo), японская система MSAS (QZSS)[6]. Они основаны на нескольких передающих поправки геостационарных спутниках, позволяющих получить высокую точность (до 30 см).

Запланировано создание системы коррекции для ГЛОНАСС под названием СДКМ.

См. также[править | править вики-текст]

Примечания[править | править вики-текст]

Ссылки[править | править вики-текст]