Растения

Материал из Википедии — свободной энциклопедии
(перенаправлено с «Plantae»)
Перейти к навигации Перейти к поиску
Растения
Многообразие растений
Многообразие растений
Научная классификация
Царство:
Растения
Международное научное название
Plantae Haeckel, 1866
Синонимы
  • Vegetabilia
Современные отделы

Расте́ния (лат. Plantae, или Vegetabilia) — биологическое царство, одна из основных групп многоклеточных организмов, отличительной чертой представителей которой является способность к фотосинтезу, включающая в себя в том числе мхи, папоротники, хвощи, плауны, голосеменные и цветковые растения. Нередко к растениям относят также все водоросли или некоторые их группы. Растения (в первую очередь, цветковые) представлены многочисленными жизненными формами, наиболее распространёнными из которых являются деревья, кустарники и травы.

Растения являются объектом исследования науки ботаники.

Общие признаки[править | править код]

  • Клетки растений имеют плотные целлюлозные оболочки.
  • В клетках большинства растений находятся зелёные пластиды — хлоропласты, содержащие зелёный пигмент хлорофилл, в связи с чем возможен фотосинтез (поглощение энергии света и ассимиляция углекислоты при участии фотосинтетических пигментов). При этом происходит выделение кислорода при разрушении молекул воды. Благодаря хлоропластам большинство растений имеет зелёный цвет.
  • В основном ведут прикреплённый образ жизни.
  • Запасные вещества в клетках накапливаются в виде крахмала.
  • Растут в течение всей жизни.
  • Жизнедеятельность регулируется фитогормонами.

Питание[править | править код]

Подавляющее большинство растений — фотоавтотрофные организмы, использующие световую энергию для синтеза органики (глюкозы) из неорганических соединений (углекислый газ и вода). Некоторые представители перешли к вторичному гетеротрофному способу питания (облигатный паразитизм, микогетеротрофность). Например, гетеротрофом является бесхлорофилльное растение петров крест, паразитирующий на корнях деревьев и кустарников и получающий готовые питательные вещества из организма-хозяина.[1]

Растениям для нормального роста и развития требуются разные минеральные вещества, наиболее важные из которых — азот, калий и фосфор. Вода с необходимыми минеральными элементами поглощается корнями из почвы в процессе минерального питания.[2]

Строение[править | править код]

Цитология[править | править код]

Размер растительных клеток варьируется от 10 до 100 мкм. У водорослей, не имеющих выраженных тканей, клетки в пределах одного организма отличаются друг от друга незначительно; у высших растений в связи с наличием тканей клетки сильно различаются по форме и строению. Обычно клетки представляют собой четырнадцатигранники, у которых восемь граней — шестиугольники и шесть — четырехугольники. Однако встречаются клетки, форма которых не поддается геометрическому описанию. Многообразие форм растительных клеток принято сводить к двум основным типам: паренхимным (длина клетки не превышает ширину или превышает незначительно) и прозенхимным (длина клетки в 5 раз и более превышает ширину).[3]

Несмотря на огромное разнообразие, клетки растений характеризуются общностью строения — это клетки эукариотические, имеющие оформленное ядро. От клеток других эукариот их отличают следующие особенности: наличие плотных целлюлозных клеточных стенок; наличие пластид, главные из которых — хлоропласты, осуществляющие фотосинтез; развитая система вакуолей (у зрелых растительных клеток имеется так называемая центральная вакуоль, занимающая бо́льшую часть объёма клетки); отсутствие центриолей при делении.[4] Главное запасное вещество растений — крахмал.

Сперматозоиды растений дву- (у мохообразных и плауновидных) или многожгутиковые (у остальных папоротникообразных, саговниковых и гинкговых), причём ультраструктура жгутикового аппарата очень похожа на таковую в жгутиковых клетках харовых водорослей.

Клетки растений объединяются в ткани, которые характеризуются отсутствием межклеточного вещества, большим количеством мёртвых клеток (некоторые ткани — склеренхима, ксилема, вторичные и третичные покровные ткани — состоят в основном из мёртвых клеток), а также тем, что, в отличие от животных, растительная ткань может состоять из разных типов клеток (например, ксилема состоит из водопроводящих элементов, волокон древесины и древесинной паренхимы). Различают образовательные ткани (меристемы) и образуемые ими постоянные ткани (проводящая, покровная, паренхима, механическая, выделительная).

Морфология[править | править код]

Тело водорослей (таллом), в отличие от высших растений, не дифференцировано на вегетативные органы (корень, стебель, листья) и не имеет единого плана строения. Органы полового (гаметангии, или генеративные органы) и бесполого (спорангии) размножения у водорослей одноклеточные; при этом женские гаметангии называются оогонии, мужские — антеридии. Таллом водорослей характеризуется чрезвычайным морфологическим разнообразием; выделяют амёбоидный, монадный, нитчатый, сифональный и другие типы строения таллома. У высших растений имеются органы, которые подразделяются на вегетативные и генеративные (гаметангии). Вегетативными органами являются корень, стебель и лист, они обеспечивают поддержание жизнедеятельности организма и участвуют в вегетативном размножении. В генеративных органах формируются гаметы, необходимые для полового размножения. У споровых растений женские гаметангии — архегонии, мужские — антеридии, у семенных растений гаметангии редуцируются и под последними обычно понимается вся совокупность органов, связанных с половым размножением, — цветки (у голосеменных — стробилы) и плоды.[5][3][6]

Различают три типа организации тела высших растений: талломный (тело не разделено на вегетативные органы и имеет вид зеленой пластины; некоторые моховидные, заростки папоротниковидных), листостебельный (тело разделено на стебель и листья, но не имеет корней; большинство моховидных), корнепобеговый (тело разделено на вегетативные органы, имеет корневую систему и систему побегов; большинство растений).[1]

Растения в основном ведут прикреплённый образ жизни, в связи с чем они формируют различные жизненные формы, отражающие приспособленность организма к тем или иным условиям обитания, — деревья, кустарники, травы, эпифиты, лианы и др.

Рост и развитие[править | править код]

Процессы роста и развития растения неразрывно связаны между собой: рост является частью индивидуального развития. Однако в одном и том же организме процессы роста и развития могут сочетаться различным образом. Растение может находиться в состоянии активного роста, но вместе с тем медленно развиваться или, наоборот, оно может быстро развиваться при замедленном росте. (Показателем темпов развития, как правило, служит переход растений к репродукции. Активность ростовых процессов оценивают по скорости увеличения массы, объема, размеров растения.) Например, у однолетних растений с момента их зацветания наблюдается частичная и даже полная приостановка процессов роста побега. У многолетних растений рост вегетативных органов (побеги, листья) зачастую является одной из причин задержки цветения.[7]

Растения обладают неограниченным ростом, который обеспечивается непрерывной деятельностью меристем. Рост локальными зонами (меристемами) отличает растения от других организмов; для растений особенно важно функционирование апикальных меристем. Реакция растений на воздействие различных экологических факторов проявляется в виде направленного роста к источнику воздействия или от такового.[1][7]

Процессы роста и развития растительного организма регулируются фитогормонами.

Размножение и жизненный цикл[править | править код]

Для растений характерны половое, бесполое (споровое) и вегетативное размножение.

У одноклеточных водорослей вегетативное размножение осуществляется митотическим делением клетки на две дочерние, фрагментацией колоний, путем повторных делений в ценобиях, формирующих новые миниатюрные ценобии. Вегетативное размножение многоклеточных водорослей происходит частями слоевища, специальными вегетативными образованиями и др. У высших растений вегетативное размножение осуществляется частями корня, стебля, листа или их видоизменениями.

Для высших сосудистых растений единственной формой полового процесса является оогамия; у водорослей встречаются также изогамия и анизогамия.

В жизненном цикле растений чередуется половое гаплоидное поколение (гаметофит) и бесполое диплоидное поколение (спорофит). На гаметофите образуются половые (генеративные) органы — мужские антеридии и женские архегонии (отсутствуют у некоторых гнетовых и у покрытосеменных); у водорослей женские генеративные органы называются оогонии. Сперматозоиды (их нет у хвойных, гнетовых и покрытосеменных) или спермии оплодотворяют находящуюся в архегонии или в зародышевом мешке яйцеклетку, в результате образуется диплоидная зигота. Зигота у высших споровых и семенных растений формирует зародыш, который постепенно развивается в спорофит; у водорослей зародыша нет. На спорофите развиваются спорангии (часто на специализированных спороносных листьях, или спорофиллах). В спорангиях происходит мейоз, и образуются гаплоидные споры. У разноспоровых растений споры двух типов: микроспоры (из них развиваются гаметофиты только с антеридиями) и мегаспоры (из них развиваются гаметофиты, несущие только архегонии); у равноспоровых споры одинаковые, из них вырастают обоеполые гаметофиты. На гаметофитах формируются гаметангии, производящие гаметы, последние сливаются и образуют зиготу — цикл замкнулся. Такой жизненный цикл имеют мохообразные и папоротникообразные, причём у первой группы доминирует гаметофит, а у второй — спорофит. У семенных растений картина усложняется за счёт того, что женский гаметофит (эндосперм у голосеменных и зародышевый мешок у цветковых) развивается из мегаспоры прямо на материнском спорофите, а мужской гаметофит (пыльцевое зерно), развивающийся из микроспоры, должен быть доставлен туда в процессе опыления. Спорофиллы семенных растений часто сложно устроены и у голосеменных объединяются в так называемые стробилы, а у покрытосеменных растений — в цветки, которые могут, в свою очередь, объединяться в соцветия. Кроме того, у семенных растений возникает специализированная, состоящая из нескольких генотипов структура — семя, которое можно условно отнести к генеративным органам. У покрытосеменных растений цветок после опыления формирует плод[8].

Определение[править | править код]

История[править | править код]

На вопрос, что называть растением, нет однозначного ответа. Первым на этот вопрос попытался ответить древнегреческий философ и учёный Аристотель, поместив растения в промежуточное состояние между неодушевлёнными предметами и животными. Он определил растения как живые организмы, которые не способны самостоятельно передвигаться (в противоположность животным)[9]. Позднее были открыты бактерии и археи, которые никак не подпадали под общепринятое понятие растений. Уже во второй половине XX века грибы и некоторые типы водорослей были выделены в отдельные категории, поскольку не имеют сосудистой и корневой системы, которая присутствует у других растений[10].

Современность[править | править код]

Определяющие признаки[править | править код]

  • Наличие плотной, не пропускающей твёрдые частицы, клеточной оболочки (как правило, состоящей из целлюлозы).
  • Растения — продуценты. Они производят органические вещества из углекислого газа с помощью энергии солнца в процессе фотосинтеза, при этом выделяют кислород (Грибы и бактерии, которых ранее относили к растениям, согласно современным классификациям выделены в самостоятельные группы).
  • Цианобактерии, или синезелёные водоросли, для которых также свойственен фотосинтез, согласно современным классификациям не относятся к растениям (включены в домен Бактерии в ранге отдела).
  • Другие признаки растений — неподвижность, постоянный рост, чередование поколений и другие — не являются уникальными, но в целом позволяют отличить растения от других групп организмов[8].

Происхождение и эволюция[править | править код]

Архейская эра (3800—2500 млн лет назад)[править | править код]

Судя по палеонтологическим находкам, разделение живых существ на царства произошло более 3 млрд лет назад. Первыми автотрофными организмами стали фотосинтезирующие бактерии (сейчас они представлены пурпурными и зелёными бактериями, цианобактериями). В частности, в мезоархее (2800—3200 млн лет назад) уже существовали цианобактериальные маты.

Протерозойская эра (2500—570 млн лет назад)[править | править код]

Единой, отвечающей на все вопросы, теории происхождения эукариотических фотоавтотрофных организмов (растений) пока нет. Одна из них (теория симбиогенеза) предполагает возникновение эукариотических фототрофов как переход эукариотической гетеротрофной амёбовидной клетки к фототрофному типу питания через симбиоз с фотосинтезирующей бактерией, которая впоследствии превратилась в хлоропласт. Согласно этой теории, таким же образом возникают и митохондрии из аэробных бактерий. Так появляются водоросли — первые настоящие растения. В протерозойскую эру широко развиваются одноклеточные и колониальные синезелёные водоросли, появляются красные и зелёные водоросли.

Палеозойская эра (570—230 млн лет назад)[править | править код]

В конце силура (405—440 млн лет назад) на Земле происходят интенсивные горообразовательные процессы, приведшие к возникновению Скандинавских гор, гор Тянь-Шань, Саян, а также к обмелению и исчезновению многих морей. В результате некоторые водоросли (сходные с современными харовыми водорослями) выходят на сушу и заселяют литорали и супралиторали, что стало возможным благодаря деятельности бактерий и цианобактерий, образовавших на поверхности суши примитивный почвенный субстрат. Так возникают первые высшие растения — риниофиты. Особенность риниофитов заключается в появлении тканей и их дифференцировки на покровные, механические, проводящие и фотосинтезирующие. Это было спровоцировано резким отличием воздушной среды от водной. В частности:

  • повышенной солнечной радиацией, для защиты от которой у первых наземных растений должен был выделяться и откладываться на поверхности кутин, что и было первым этапом формирования покровных тканей (эпидермы);
  • откладывание кутина делает невозможным поглощение влаги всей площадью (как у водорослей), что приводит к изменению функции ризоидов, которые теперь не только прикрепляют организм к субстрату, но и поглощают из него воду;
  • разделение на подземную и надземную части спровоцировало необходимость доставки минеральных веществ, воды и продуктов фотосинтеза по всему организму, реализованную появившимися проводящими тканями — ксилемой и флоэмой;
  • отсутствие выталкивающей силы воды и соответственно невозможность плавать, в ходе конкуренции видов за солнечный свет, привело к появлению механических тканей с целью «приподняться» над соседями, ещё одним фактором было улучшенное освещение, активизировавшее процесс фотосинтеза и приведшее к избытку углерода, что и позволило образоваться механическим тканям;
  • в ходе всех вышеперечисленных ароморфозов фотосинтезирующие клетки выделяются в отдельную ткань.

Древнейшее известное наземное растение — куксония. Куксония обнаружена в 1937 г. в силурийских песчаниках Шотландии (возраст порядка 415 млн лет). Дальнейшая эволюция высших растений разделилась на две линии: гаметофитную (моховидные) и спорофитную (сосудистые растения). Первые голосеменные растения появляются в начале мезозоя (примерно 220 млн лет назад). Первые покрытосеменные (цветковые) возникают в юрском периоде.

Классификация[править | править код]

Эволюция систем классификации[править | править код]

Геккель (1894)
Три царства
Уиттекер (1969)
Пять царств
Вёзе (1977)
Шесть царств
Вёзе (1990)
Три домена
Кавалье-Смит (1998)
Два домена и семь царств
Животные Животные Животные Эукариоты Эукариоты Животные
Растения Грибы Грибы Грибы
Растения Растения Растения
Протисты Протисты Хромисты
Протисты Простейшие
Monera Археи Археи Прокариоты Археи
Эубактерии Эубактерии Эубактерии

Разнообразие[править | править код]

По состоянию на начало 2010 года, по данным Международного союза охраны природы (IUCN), было описано около 320 тысяч видов растений, из них около 280 тысяч видов цветковых, 1 тысяча видов голосеменных, около 16 тысяч мохообразных, около 12 тысяч видов высших споровых растений (Плауновидные и Папоротникообразные)[11]. Однако, это число увеличивается, так как постоянно открываются новые виды. Так, по состоянию на май 2022 года, в проекте World Flora Online содержатся данные о более чем 350 000 видов растений[12].

Разнообразие современных растений
Отделы Русское
название
Число
видов
Водоросли Chlorophyta Зелёные водоросли 13 000 — 20 000[13]
Charophyta Харофиты 4000—6000[14]
Мохообразные Marchantiophyta Печёночные мхи 6000—8000[15]
Anthocerotophyta Антоцеротовые мхи 100—200[16]
Bryophyta Моховидные 10 000[17]
Сосудистые споровые Lycopodiophyta Плауновидные 1200[18]
Polypodiophyta Папоротниковидные 11 000[18]
Семенные растения Cycadophyta Саговниковидные 160[19]
Ginkgophyta Гинкговидные 1[20]
Pinophyta Хвойные 630[18]
Gnetophyta Гнетовидные 70[18]
Magnoliophyta Цветковые растения 281 821[11]

Значение[править | править код]

Существование мира животных, включая человека, было бы невозможно без растений, чем и определяется их особая роль в жизни нашей планеты. Из всех организмов только растения и фотосинтезирующие бактерии способны аккумулировать энергию Солнца, создавая при её посредстве органические вещества из веществ неорганических; при этом растения извлекают из атмосферы CO2 и выделяют O2. Именно деятельностью растений была создана атмосфера, содержащая O2, и их существованием она поддерживается в состоянии, пригодном для дыхания. Растения — основное, определяющее звено в сложной цепи питания всех гетеротрофных организмов, включая человека. Наземные растения образуют степи, луга, леса и другие растительные группировки, создавая ландшафтное разнообразие Земли и бесконечное разнообразие экологических ниш для жизни организмов всех царств. Наконец, при непосредственном участии растений возникла и образуется почва.

Пищевая промышленность[править | править код]

Одомашнивание растений[править | править код]

Человеком одомашнено свыше 200 видов растений, относящихся к более чем 100 ботаническим родам. Их широкий таксономический спектр отражает разнообразие мест, где они были одомашнены. Основные продовольственные растения, используемые в культуре в настоящее время, были одомашнены в странах юго-западной Азии. В настоящее время это территории Ирака, Ирана, Иордании, Израиля и Палестины. Вероятно, древним земледельцам было известны преимущества вегетативного размножения (клонирования) и близкородственного скрещивания (инбридинга). Примеры растений, репродуцируемых клонированием: картофель, фруктовые деревья. Почти все питательные вещества, получаемые людьми с пищей в этих странах, поступали от высокоуглеводных злаков с довольно высоким содержанием белка (пшеница, ячмень). Тем не менее, белки злаков не полностью сбалансированы по аминокислотному составу (низкое содержание лизина и метионина). Эти злаки древние земледельцы дополнили бобовыми растениями — горох, чечевица, вика. Единственный культурный злак — рожь возник гораздо позже, чем пшеница и другие культурные растения. Самоопылитель лён имеет семена богатые жиром, что дополнило пищевую триаду ранних земледельцев (жиры, белки, углеводы). Ранние земледельцы составили набор одомашненных растений, которые удовлетворяют основным потребностям человека в пище и сегодня. В дальнейшем имело место постепенное распространение культурных растений из очага их возникновения в новые районы. В итоге, одни и те же растения стали пищевыми для населения всего мира. Часть культурных растений прошли одомашнивание в странах Юго-Восточной Азии. Сюда относятся такие самоопылители, как хлопок, рис, сорго.

Современные культуры растений[править | править код]

Из огромного разнообразия царства растений особое значение в повседневной жизни имеют семенные и главным образом Цветковые растения (покрытосеменные). Именно к ним относятся почти все растения, введённые человеком в культуру. Первое место в жизни человека принадлежит хлебным растениям (пшеница, рис, кукуруза, просо, сорго, ячмень, рожь, овёс) и различным крупяным культурам. Важное место в пищевом рационе человека занимает в странах с умеренным климатом картофель, а в более южных областях — батат, ямс, ока, таро и др. Широко употребляются богатые растительными белками зернобобовые (фасоль, горох, нут, чечевица и др.), сахароносные (сахарная свёкла и сахарный тростник), многочисленные масличные (подсолнечник, арахис, маслина и др.), плодовые, ягодные, овощные и иные культурные растения.

Современное общество трудно представить без тонизирующих растений — чая, кофе, какао, равно как без винограда — основы виноделия, или без табака.

Животноводство базируется на использовании дикорастущих и культивируемых кормовых растений.

Лёгкая промышленность[править | править код]

Хлопчатник, лён, конопля, рами, джут, кенаф, сизаль и многие другие волокнистые растения обеспечивают человека одеждой и техническими тканями.

Деревообрабатывающая промышленность[править | править код]

Ежегодно потребляется огромное количество леса — в качестве строительного материала, источника получения целлюлозы и др.

Энергетика[править | править код]

Очень важное значение для человека имеет один из главных источников энергии — каменный уголь, а также торф, о которых можно сказать, что они представляют собой аккумулированную в растительных остатках прошлого энергию Солнца.

Медицина и химия[править | править код]

До сих пор не утратил своего экономического значения добываемый из растений естественный каучук. Ценные смолы, камеди, эфирные масла, красители и другие продукты, получаемые в результате переработки растений, занимают видное место в хозяйственной деятельности человека. Большое число растений служат основными поставщиками витаминов, а другие (наперстянка, раувольфия, алоэ, белладонна, пилокарпус, валериана и сотни других) — источником необходимых лекарств, веществ и препаратов.

Экология[править | править код]

Зелёные растения обогащают атмосферу кислородом и является основным источником энергии и органического материала почти для всех экосистем. Фотосинтез радикально изменил состав ранней земной атмосферы, которая содержит в настоящее время около 21 % кислорода. Животные и многие другие аэробные организмы нуждаются в кислороде, анаэробные формы относительно редки. Во многих экосистемах растения являются основой пищевых цепей.

Наземные растения являются ключевыми компонентами водного и других биохимических циклов. Некоторые растения эволюционировали совместно с азотфиксирующими бактериями и включены в кругооборот азота. Корни растений играют существенную роль в развитии почвы и предотвращении её эрозии.

Распределение[править | править код]

Экологические взаимосвязи[править | править код]

Многие животные эволюционировали совместно с растениями. Многие насекомые опыляют цветки в обмен на пищу в форме пыльцы или нектара. Четвероногие едят плоды и распространяют семена с фекалиями. Большинство видов растений выработали симбиоз с различными видами грибов (микориза). Грибы помогают растению извлекать воду и минеральные вещества из почвы, а растение снабжает грибы углеводородами, произведёнными в результате фотосинтеза. Существуют также симбиотические грибы — эндофиты, которые живут внутри растений и способствуют росту организма-хозяина.

Паразитизм[править | править код]

Растения-паразиты существуют как среди низших, так и среди высших растений. Такие растения приносят большой вред сельскому хозяйству.

Хищные растения[править | править код]

Существует более 500 видов хищных растений. Произрастают хищные растения обычно на почвах, бедных питательными веществами и минеральными солями. «Хищность» растений обусловлена недостатком азота в почвах, именно поэтому растения-хищники приспособились получать азот из насекомых и других животных, которых они ловят с помощью разнообразных хитроумных ловушек.

Самым известным хищным растением лесов России является Росянка круглолистная (Drosera rotundifolia). Это растение выделяет по краям листьев липкую жидкость, похожую на росу, — кислый пищеварительный сок. Насекомое садится на капельку «росы», приклеивается и становится жертвой росянки.

Другие известные растения-хищники — венерина мухоловка, дарлингтония, жирянка, росолист.

См. также[править | править код]

Примечания[править | править код]

  1. 1 2 3 РАСТЕНИЯ • Большая российская энциклопедия - электронная версия. bigenc.ru. Дата обращения: 24 сентября 2022.
  2. Минеральное питание растений — урок. Биология, 6 класс.. www.yaklass.ru. Дата обращения: 24 сентября 2022.
  3. 1 2 О. А. Коровкин. Ботаника. — 2016.
  4. И. И. Андреева, Л. С. Родман. Ботаника. — 2002.
  5. Т. А. Сауткина, В. Д. Поликсенова. Морфология растений. В 2-х частях. Часть 1. — Белорусский государственный университет, 2004.
  6. М. С. Гиляров. Биологический энциклопедический словарь. — 1986.
  7. 1 2 Дитченко Т. И. Рост, развитие и основы биотехнологии растений. — 2014.
  8. 1 2 Шипунов А. Б. Растения // Биология: Школьная энциклопедия / Белякова Г. и др. — М.: БРЭ, 2004. — 990 с. — ISBN 5-85270-213-7.
  9. University of Hamburg Department of Biology «First Scientific Descriptions Архивировано 9 мая 2014 года.». (Дата обращения: 22 ноября 2007)
  10. Microbiology — Helium «Why algae, fungi and microbes are not considered plant life (недоступная ссылка)» (Дата обращения: 23 ноября 2007)
  11. 1 2 lnternational Union for Conservation of Nature and Natural Resources, 2010.1. IUCN Red List of Threatened Species:Summary Statistics Архивировано 21 июля 2011 года. (англ.)  (Дата обращения: 20 мая 2010)
  12. Home. Дата обращения: 11 мая 2022. Архивировано 25 сентября 2015 года.
  13. Van den Hoek, C., D. G. Mann, & H. M. Jahns, 1995. Algae:An Introduction to Phycology. pages 343, 350, 392, 413, 425, 439, & 448 (Cambridge: Cambridge University Press). ISBN 0-521-30419-9
  14. Van den Hoek, C., D. G. Mann, & H. M. Jahns, 1995. Algae:An Introduction to Phycology. pages 457, 463, & 476. (Cambridge: Cambridge University Press). ISBN 0-521-30419-9
  15. Crandall-Stotler, Barbara. & Stotler, Raymond E., 2000. «Morphology and classification of the Marchantiophyta». page 21 in A. Jonathan Shaw & Bernard Goffinet (Eds.), Bryophyte Biology. (Cambridge: Cambridge University Press). ISBN 0-521-66097-1
  16. Schuster, Rudolf M., The Hepaticae and Anthocerotae of North America, volume VI, pages 712—713. (Chicago: Field Museum of Natural History, 1992). ISBN 0-914868-21-7.
  17. Buck, William R. & Bernard Goffinet, 2000. «Morphology and classification of mosses», page 71 in A. Jonathan Shaw & Bernard Goffinet (Eds.), Bryophyte Biology. (Cambridge: Cambridge University Press). ISBN 0-521-66097-1
  18. 1 2 3 4 Raven, Peter H., Ray F. Evert, & Susan E. Eichhorn, 2005. Biology of Plants, 7th edition. (New York: W. H. Freeman and Company). ISBN 0-7167-1007-2.
  19. Gifford, Ernest M. & Adriance S. Foster, 1988. Morphology and Evolution of Vascular Plants, 3rd edition, page 358. (New York: W. H. Freeman and Company). ISBN 0-7167-1946-0.
  20. Taylor, Thomas N. & Edith L. Taylor, 1993. The Biology and Evolution of Fossil Plants, page 636. (New Jersey: Prentice-Hall). ISBN 0-13-651589-4.

Литература[править | править код]