Sgn

Материал из Википедии — свободной энциклопедии
Перейти к: навигация, поиск
График функции y = sgn x

sgn (сигнум, от лат. signum — знак) — кусочно-постоянная функция. Обозначается . Определяется следующим образом:

Функция не является элементарной.

Часто используется представление

При этом производная модуля в нуле, которая, строго говоря, не определена, доопределяется средним арифметическим соответствующих производных слева и справа.

Функция применяется в теории обработки сигналов, в математической статистике и других разделах математики, где требуется компактная запись для индикации знака числа.

История[править | править вики-текст]

Функцию ввёл Леопольд Кронекер в 1878 году, сначала он обозначал её иначе: . В 1884 году Кронекеру понадобилось в одной статье использовать, наряду с , функцию «целая часть», которая также обозначалась квадратными скобками. Во избежание путаницы Кронекер ввёл обозначение , которое (за вычетом точки перед аргументом) и закрепилось в науке.

Свойства функции[править | править вики-текст]

  • Область определения: .
  • Область значений: .
  • Гладка во всех точках, кроме нуля.
  • Функция нечётна.
  • Точка является точкой разрыва первого рода, так как пределы справа и слева от нуля равны и соответственно.
  • и для
  • , где  — дельта-функция Дирака.

См. также[править | править вики-текст]

Литература[править | править вики-текст]

  • Бронштейн И. Н., Семендяев К. А. Справочник по математике. — М.: Наука, 1964. — 608 с.
  • Воднев В. Т., Наумович А. Ф., Наумович Н. Ф. Основные математические формулы. Справочник. — Минск: Вышэйшая школа, 1988. — 269 с.