Символ Шлефли: различия между версиями

Материал из Википедии — свободной энциклопедии
Перейти к навигации Перейти к поиску
[непроверенная версия][непроверенная версия]
Содержимое удалено Содержимое добавлено
Нет описания правки
Нет описания правки
Строка 4: Строка 4:
Символ Шлефли для [[правильный многогранник|правильного многогранника]] <math>\Gamma</math> размерности <math>n</math> записывается в виде <math>\{p_1, p_2, p_3,\ldots p_{n-1}\}</math>. Он [[Индуктивное умозаключение|индуктивно]] определяется следующим образом: определим <math>p_1</math>как число сторон двумерной грани многогранника <math>\Gamma</math>. Затем зафиксируем одну из вершин <math>P</math> многогранника <math>\Gamma</math> и рассмотрим все вершины, соединённые с ней ребром. Все они лежат в одной [[Гиперплоскость|гиперплоскости]] <math>H</math>, [[Ортогональность|ортогональной]] к оси, соединяющей центр многогранника с вершиной <math>P</math>. Сечение многогранника <math>\Gamma</math> гиперплоскостью <math>H</math> представляет собой правильный многогранник <math>\Gamma^\prime</math> размерности <math>n-1</math>. Поскольку все вершины <math>\Gamma</math> равноправны, тип этого многогранника не зависит от выбора вершины <math>P</math>. Теперь определим <math>p_2</math> как число сторон двухмерной грани многогранника <math>\Gamma^\prime</math>. Продолжая действовать таким образом до тех пор, пока получающееся сечение имеет двумерную грань, мы получим символ Шлефли многогранника <math>\Gamma</math>.
Символ Шлефли для [[правильный многогранник|правильного многогранника]] <math>\Gamma</math> размерности <math>n</math> записывается в виде <math>\{p_1, p_2, p_3,\ldots p_{n-1}\}</math>. Он [[Индуктивное умозаключение|индуктивно]] определяется следующим образом: определим <math>p_1</math>как число сторон двумерной грани многогранника <math>\Gamma</math>. Затем зафиксируем одну из вершин <math>P</math> многогранника <math>\Gamma</math> и рассмотрим все вершины, соединённые с ней ребром. Все они лежат в одной [[Гиперплоскость|гиперплоскости]] <math>H</math>, [[Ортогональность|ортогональной]] к оси, соединяющей центр многогранника с вершиной <math>P</math>. Сечение многогранника <math>\Gamma</math> гиперплоскостью <math>H</math> представляет собой правильный многогранник <math>\Gamma^\prime</math> размерности <math>n-1</math>. Поскольку все вершины <math>\Gamma</math> равноправны, тип этого многогранника не зависит от выбора вершины <math>P</math>. Теперь определим <math>p_2</math> как число сторон двухмерной грани многогранника <math>\Gamma^\prime</math>. Продолжая действовать таким образом до тех пор, пока получающееся сечение имеет двумерную грань, мы получим символ Шлефли многогранника <math>\Gamma</math>.
Таким образом, символ Шлефли <math>n</math>-мерного многогранника состоит из <math>n-1</math> целого числа, каждое из которых не меньше 3.
Таким образом, символ Шлефли <math>n</math>-мерного многогранника состоит из <math>n-1</math> целого числа, каждое из которых не меньше 3.

== Свойства ==


== Примеры ==
== Примеры ==

Версия от 16:31, 10 августа 2019

Символ Шлефли — комбинаторная характеристика правильного многогранника, применяется для описания правильных многогранников во всех размерностях. Назван в честь швейцарского математика Людвига Шлефли, описавшего все правильные многогранники в евклидовом пространстве произвольной размерности.

Построение

Символ Шлефли для правильного многогранника размерности записывается в виде . Он индуктивно определяется следующим образом: определим как число сторон двумерной грани многогранника . Затем зафиксируем одну из вершин многогранника и рассмотрим все вершины, соединённые с ней ребром. Все они лежат в одной гиперплоскости , ортогональной к оси, соединяющей центр многогранника с вершиной . Сечение многогранника гиперплоскостью представляет собой правильный многогранник размерности . Поскольку все вершины равноправны, тип этого многогранника не зависит от выбора вершины . Теперь определим как число сторон двухмерной грани многогранника . Продолжая действовать таким образом до тех пор, пока получающееся сечение имеет двумерную грань, мы получим символ Шлефли многогранника . Таким образом, символ Шлефли -мерного многогранника состоит из целого числа, каждое из которых не меньше 3.

Свойства

Примеры

Размерность
пространства
Символ Шлефли Многогранник
Правильный треугольник
Правильный четырёхугольник
Правильный пятиугольник
Правильный шестиугольник
Правильный n-угольник
Правильный тетраэдр
Куб
Октаэдр
Икосаэдр
Додекаэдр
Пятиячейник
Тессеракт
Шестнадцатиячейник
Двадцатичетырёхъячейник
Стодвадцатиячейник
Шестисотячейник
Симплекс
Гипероктаэдр
Гиперкуб

См. также

Ссылки