Изотопы: различия между версиями

Материал из Википедии — свободной энциклопедии
Перейти к навигации Перейти к поиску
[непроверенная версия][непроверенная версия]
Содержимое удалено Содержимое добавлено
висмут-209 радиоактивен
Строка 125: Строка 125:
| 42 || Mo || Молибден || 92<br>94<br>95<br>96<br>97<br>98 || 15,86<br>9,12<br>15,70<br>16,50<br>9,45<br>23,75
| 42 || Mo || Молибден || 92<br>94<br>95<br>96<br>97<br>98 || 15,86<br>9,12<br>15,70<br>16,50<br>9,45<br>23,75
|-
|-
| 43 || Tc || Технеций || - || -
| 43 || Tc || Технеций || ||
|-
|-
| 44 || Ru || Рутений || 96<br>98<br>99<br>100<br>101<br>102<br>104 || 5,7<br>2,2<br>12,8<br>12,7<br>13<br>31,3<br>18,3
| 44 || Ru || Рутений || 96<br>98<br>99<br>100<br>101<br>102<br>104 || 5,7<br>2,2<br>12,8<br>12,7<br>13<br>31,3<br>18,3
Строка 161: Строка 161:
| 60 || Nd || Неодим || 142<br>143<br>145<br>146<br>148 || 27,2<br>12,2<br>8,3<br>17,2<br>5,7
| 60 || Nd || Неодим || 142<br>143<br>145<br>146<br>148 || 27,2<br>12,2<br>8,3<br>17,2<br>5,7
|-
|-
| 61 || Pm || Прометий || - || -
| 61 || Pm || Прометий || ||
|-
|-
| 62 || Sm || Самарий || 144<br>150<br>152<br>154 || 3,07<br>7,38<br>26,75<br>22,75
| 62 || Sm || Самарий || 144<br>150<br>152<br>154 || 3,07<br>7,38<br>26,75<br>22,75
Строка 205: Строка 205:
| 82 || Pb || Свинец || 204<br>206<br>207<br>208 || 1,4<br>24,1<br>22,1<br>52,4
| 82 || Pb || Свинец || 204<br>206<br>207<br>208 || 1,4<br>24,1<br>22,1<br>52,4
|-
|-
| 83 || Bi || Висмут || 209 || 100
| 83 || Bi || Висмут || ||
|-
|-
| 84 || Po || Полоний || ||
| 84 || Po || Полоний || ||
|-
|-
| 85 || At || Астат || - || -
| 85 || At || Астат || ||
|-
|-
| 86 || Rn || Радон || ||
| 86 || Rn || Радон || ||
|-
|-
| 87 || Fr || Франций || - || -
| 87 || Fr || Франций || ||
|-
|-
| 88 || Ra || Радий || ||
| 88 || Ra || Радий || ||
Строка 225: Строка 225:
| 92 || U || Уран || ||
| 92 || U || Уран || ||
|}
|}

Тантал также имеет стабильный [[ядерные изомеры|изомер]] (энергетически возбуждённое состояние): <sup>180m</sup>Ta (изотопная распространённость 0,0123 %).

Кроме стабильных нуклидов, в природных изотопных смесях также присутствуют примордиальные радионуклиды (т.е. нуклиды с очень большими периодами полураспада, сохранившиеся с момента образования Земли).


== См. также ==
== См. также ==

Версия от 19:41, 23 ноября 2020

Ядерная физика
Атомное ядро · Радиоактивный распад · Ядерная реакция · Термоядерная реакция
См. также: Портал:Физика

Изото́пы (от др.-греч. ισος — «равный», «одинаковый», и τόπος — «место») — разновидности атомовядер) какого-либо химического элемента, которые имеют одинаковый атомный (порядковый) номер, но при этом разные массовые числа[1]. Название связано с тем, что все изотопы одного атома помещаются в одно и то же место (в одну клетку) таблицы Менделеева[2]. Химические свойства атома зависят от строения электронной оболочки, которая, в свою очередь, определяется в основном зарядом ядра Z (то есть количеством протонов в нём), и почти не зависят от его массового числа A (то есть суммарного числа протонов Z и нейтронов N).

Все изотопы одного элемента имеют одинаковый заряд ядра, отличаясь лишь числом нейтронов. Обычно изотоп обозначается символом химического элемента, к которому он относится, с добавлением верхнего левого индекса, означающего массовое число (например, 12C, 222Rn). Можно также написать название элемента с добавлением через дефис массового числа (например, углерод-12, радон-222)[3]. Некоторые изотопы имеют традиционные собственные названия (например, дейтерий, актинон).

Различают изотопы устойчивые (стабильные) и радиоактивные[4].

Пример изотопов: 16
8
O, 17
8
O, 18
8
O — три стабильных изотопа кислорода.

На март 2017 года известно 3437 изотопов всех элементов[5].

Терминология

Первоначально изотопы также назывались изотопными элементами[6], а в настоящее время иногда называют изотопными нуклидами[7].

Основная позиция ИЮПАК состоит в том, что правильным термином в единственном числе для обозначения атомов одного химического элемента с одинаковой атомной массой является нуклид, а термин изотопы допускается применять для обозначения совокупности нуклидов одного элемента. Термин изотопы был предложен и применялся изначально во множественном числе, поскольку для сравнения необходимо минимум две разновидности атомов. В дальнейшем в практику широко вошло также употребление термина в единственном числе — изотоп. Кроме того, термин во множественном числе часто применяется для обозначения любой совокупности нуклидов, а не только одного элемента, что также некорректно. В настоящее время позиции международных научных организаций не приведены к единообразию и термин изотоп продолжает широко применяться, в том числе и в официальных материалах различных подразделений ИЮПАК и ИЮПАП. Это один из примеров того, как смысл термина, изначально в него заложенный, перестаёт соответствовать понятию, для обозначения которого этот термин используется (другой хрестоматийный пример — атом, который, в противоречии с названием, не является неделимым).

История открытия изотопов

Первое доказательство того, что вещества, имеющие одинаковое химическое поведение, могут иметь различные физические свойства, было получено при исследовании радиоактивных превращений атомов тяжёлых элементов. В 1906—1907 годах выяснилось, что продукт радиоактивного распада урана — ионий и продукт радиоактивного распада тория — радиоторий имеют те же химические свойства, что и торий, но отличаются от него атомной массой и характеристиками радиоактивного распада. Было обнаружено позднее, что у всех трёх продуктов одинаковы оптические и рентгеновские спектры. Такие вещества, идентичные по химическим свойствам, но различные по массе атомов и некоторым физическим свойствам, по предложению английского учёного Содди с 1910 г. стали называть изотопами.

На март 2017 года известно 3437 изотопов всех элементов[5], из них 254 стабильных, 29 условно-стабильных (с периодом полураспада более 10 миллиардов лет), 294 (9 %) изотопы трансурановых элементов, 1209 (38 %) нейтронно-избыточных и 1277 (40 %) протонно-избыточных (то есть отклоняющихся от линии бета-стабильности в сторону избытка нейтронов или протонов, соответственно). По количеству открытых изотопов первое место занимают США (1237), затем идут Германия (558), Великобритания (299), СССР/Россия (247) и Франция (217). Среди лабораторий мира первые пять мест по числу открытых изотопов занимают Национальная лаборатория им. Лоуренса в Беркли (638), Институт тяжёлых ионов в Дармштадте (438), Объединённый институт ядерных исследований в Дубне (221), Кавендишская лаборатория в Кембридже (218) и ЦЕРН (115). За 10 лет (2006—2015 годы включительно) в среднем физики открывали в год 23 нейтронно-избыточных и 3 протонно-избыточных изотопа, а также 4 изотопа трансурановых элементов. Общее количество учёных, являвшихся авторами или соавторами открытия какого-либо изотопа, составляет 3598 человек[8][9].

Изотопы в природе

Известно, что изотопный состав большинства элементов на Земле одинаков во всех материалах. Некоторые физические процессы в природе приводят к нарушению изотопного состава элементов (природное фракционирование изотопов, характерное для лёгких элементов, а также изотопные сдвиги при распаде природных долгоживущих изотопов). Постепенное накопление в минералах ядер — продуктов распада некоторых долгоживущих нуклидов используется в ядерной геохронологии. Особое значение имеют процессы образования изотопов углерода в верхних слоях атмосферы под воздействием космического излучения. Эти изотопы распределяются в атмосфере и гидросфере планеты, вовлекаются в оборот углерода живыми существами (животными и растениями). Изучение распределения изотопов углерода лежит в основе радиоуглеродного анализа.

Применение изотопов человеком

В технологической деятельности люди научились изменять изотопный состав элементов для получения каких-либо специфических свойств материалов. Например, 235U способен к цепной реакции деления тепловыми нейтронами и может использоваться в качестве топлива для ядерных реакторов или ядерного оружия. Однако в природном уране лишь 0,72 % этого нуклида, тогда как цепная реакция практически осуществима лишь при содержании 235U не менее 3 %. В связи с близостью физико-химических свойств изотопов тяжёлых элементов, процедура изотопного обогащения урана является крайне сложной технологической задачей, которая доступна лишь десятку государств в мире. Во многих отраслях науки и техники (например, в радиоиммунном анализе) используются изотопные метки.

Нуклиды 60Co и 137Cs используются в стерилизации γ-лучами (лучевая стерилизация) как один из методов физической стерилизации инструментов, перевязочного материала и прочего. Доза проникающей радиации должна быть весьма значительной — до 20-25 кГр, что требует особых мер безопасности. В связи с этим лучевая стерилизация проводится в специальных помещениях и является заводским методом стерилизации (непосредственно в стационарах она не производится).[10]

Таблица стабильных изотопов
Количество
протонов
Символ Элемент Количество
нейтронов
Изотопная распространённость
на Земле, %
1 H Водород 1
2
99,98
0,02
2 He Гелий 3
4
0,00001
99,99999
3 Li Литий 6
7
7,9
92,1
4 Be Бериллий 9 100
5 B Бор 10
11
18,8
81,2
6 C Углерод 12
13
98,9
1,1
7 N Азот 14
15
99,62
0,38
8 O Кислород 16
17
18
99,76
0,04
0,20
9 F Фтор 19 100
10 Ne Неон 20
21
22
90,48
0,27
9,25
11 Na Натрий 23 100
12 Mg Магний 24
25
26
78,6
10,1
11,3
13 Al Алюминий 27 100
14 Si Кремний 28
29
30
92,23
4,67
3,10
15 P Фосфор 31 100
16 S Сера 32
33
34
36
95,02
0,75
4,21
0,02
17 Cl Хлор 35
37
75,78
24,22
18 Ar Аргон 36
38
40
0,337
0,063
99,600
19 K Калий 39
41
93,258
6,730
20 Ca Кальций 40
42
43
44
46
96,941
0,647
0,135
2,086
0,004
21 Sc Скандий 45 100
22 Ti Титан 46
47
48
49
50
7,95
7,75
73,45
5,51
5,34
23 V Ванадий 51 99,750
24 Cr Хром 50
52
53
54
4,345
83,789
9,501
2,365
25 Mn Марганец 55 100
26 Fe Железо 54
56
57
58
5,845
91,754
2,119
0,282
27 Co Кобальт 59 100
28 Ni Никель 58
60
61
62
64
68,27
26,10
1,13
3,59
0,91
29 Cu Медь 63
65
69,1
30,9
30 Zn Цинк 64
66
67
68
70
49,2
27,7
4,0
18,5
0,6
31 Ga Галлий 69
71
60,11
39,89
32 Ge Германий 70
72
73
74
20,55
27,37
7,67
36,74
33 As Мышьяк 75 100
34 Se Селен 74
76
77
78
80
0,87
9,02
7,58
23,52
49,82
35 Br Бром 79
81
50,56
49,44
36 Kr Криптон 80
82
83
84
86
2,28
11,58
11,49
57,00
17,30
37 Rb Рубидий 85 72,2
38 Sr Стронций 84
86
87
88
0,56
9,86
7,00
82,58
39 Y Иттрий 89 100
40 Zr Цирконий 90
91
92
94
51,46
11,23
17,11
17,4
41 Nb Ниобий 93 100
42 Mo Молибден 92
94
95
96
97
98
15,86
9,12
15,70
16,50
9,45
23,75
43 Tc Технеций
44 Ru Рутений 96
98
99
100
101
102
104
5,7
2,2
12,8
12,7
13
31,3
18,3
45 Rh Родий 103 100
46 Pd Палладий 102
104
105
106
108
110
1,00
11,14
22,33
27,33
26,46
11,72
47 Ag Серебро 107
109
51,839
48,161
48 Cd Кадмий 106
108
110
111
112
114
1,25
0,89
12,47
12,80
24,11
28,75
49 In Индий 113 4,29
50 Sn Олово 112
114
115
116
117
118
119
120
122
124
0,96
0,66
0,35
14,30
7,61
24,03
8,58
32,85
4,72
5,94
51 Sb Сурьма 121
123
57,36
42,64
52 Te Теллур 120
122
123
124
125
126
0,09
2,55
0,89
4,74
7,07
18,84
53 I Иод 127 100
54 Xe Ксенон 126
128
129
130
131
132
134
0,089
1,910
26,401
4,071
21,232
26,909
10,436
55 Cs Цезий 133 100
56 Ba Барий 132
134
135
136
137
138
0,10
2,42
6,59
7,85
11,23
71,70
57 La Лантан 139 99,911
58 Ce Церий 136
138
140
142
0,185
0,251
88,450
11,114
59 Pr Празеодим 141 100
60 Nd Неодим 142
143
145
146
148
27,2
12,2
8,3
17,2
5,7
61 Pm Прометий
62 Sm Самарий 144
150
152
154
3,07
7,38
26,75
22,75
63 Eu Европий 151
153
52,2
47,8
64 Gd Гадолиний 154
155
156
157
158
160
2,18
14,80
20,47
15,65
24,84
21,86
65 Tb Тербий 159 100
66 Dy Диспрозий 156
158
160
161
162
163
164
0,056
0,095
2,329
18,889
25,475
24,896
28,260
67 Ho Гольмий 165 100
68 Er Эрбий 162
164
166
167
168
170
0,139
1,601
33,503
22,869
26,978
14,910
69 Tm Тулий 169 100
70 Yb Иттербий 168
170
171
172
173
174
176
0,126
3,023
14,216
21,754
16,098
31,896
12,887
71 Lu Лютеций 175 97,41
72 Hf Гафний 176
177
178
179
180
5,26
18,60
27,28
13,62
35,08
73 Ta Тантал 181 99,9877
74 W Вольфрам 182
184
186
26,50
30,64
28,43
75 Re Рений 185 37,07
76 Os Осмий 184
187
188
189
190
192
0,02
1,96
13,24
16,15
26,26
40,78
77 Ir Иридий 191
193
37,3
62,7
78 Pt Платина 192
194
195
196
198
0,782
32,967
33,832
25,242
7,163
79 Au Золото 197 100
80 Hg Ртуть 196
198
199
200
201
202
204
0,155
10,04
16,94
23,14
13,17
29,74
6,82
81 Tl Таллий 203
205
29,52
70,48
82 Pb Свинец 204
206
207
208
1,4
24,1
22,1
52,4
83 Bi Висмут
84 Po Полоний
85 At Астат
86 Rn Радон
87 Fr Франций
88 Ra Радий
89 Ac Актиний
90 Th Торий
91 Pa Протактиний
92 U Уран

Тантал также имеет стабильный изомер (энергетически возбуждённое состояние): 180mTa (изотопная распространённость 0,0123 %).

Кроме стабильных нуклидов, в природных изотопных смесях также присутствуют примордиальные радионуклиды (т.е. нуклиды с очень большими периодами полураспада, сохранившиеся с момента образования Земли).

См. также

Примечания

  1. Isotope. Encyclopedia Britannica.
  2. Soddy, Frederick The origins of the conceptions of isotopes. Nobelprize.org 393 (12 декабря 1922). — «Thus the chemically identical elements - or isotopes, as I called them for the first time in this letter to Nature, because they occupy the same place in the Periodic Table ...» Дата обращения: 9 января 2019.
  3. IUPAC (Connelly, N. G.; Damhus, T.; Hartshorn, R. M.; and Hutton, A. T.), Nomenclature of Inorganic Chemistry — IUPAC Recommendations 2005, The Royal Society of Chemistry, 2005; IUPAC (McCleverty, J. A.; and Connelly, N. G.), Nomenclature of Inorganic Chemistry II. Recommendations 2000, The Royal Society of Chemistry, 2001; IUPAC (Leigh, G. J.), Nomenclature of Inorganic Chemistry (recommendations 1990), Blackwell Science, 1990; IUPAC, Nomenclature of Inorganic Chemistry, Second Edition, 1970; probably in the 1958 first edition as well
  4. Изотопы // Казахстан. Национальная энциклопедия. — Алматы: Қазақ энциклопедиясы, 2005. — Т. II. — ISBN 9965-9746-3-2. (CC BY-SA 3.0)
  5. 1 2 Audi G., Kondev F. G., Wang M., Huang W. J., Naimi S. The Nubase2016 evaluation of nuclear properties (англ.) // Chinese Physics C. — 2017. — Vol. 41, iss. 3. — P. 030001-1—030001-138. — doi:10.1088/1674-1137/41/3/030001. — Bibcode2017ChPhC..41c0001A.Открытый доступ
  6. Soddy, Frederick. Intra-atomic charge (англ.) // Nature. — 1913. — Vol. 92, no. 2301. — P. 399—400. — doi:10.1038/092399c0. — Bibcode1913Natur..92..399S.
  7. IUPAP Red Book // iupap.org.
  8. Thoennessen M. (2016). "2015 Update of the Discoveries of Isotopes". arXiv:1606.00456 [nucl-ex].
  9. Michael Thoennessen. Discovery of Nuclides Project. Дата обращения: 6 июня 2016. Архивировано 4 марта 2016 года.
  10. Петров С. В. Глава 2. Асептика и антисептика // Общая хирургия. — СПб.: Лань, 1999. — С. 672.

Ссылки