Сжатие видео: различия между версиями

Материал из Википедии — свободной энциклопедии
Перейти к навигации Перейти к поиску
[отпатрулированная версия][непроверенная версия]
Содержимое удалено Содержимое добавлено
запрос источников
Строка 17: Строка 17:
Использование большинства методов сжатия (таких, как дискретное косинусное преобразование и вейвлет-преобразование) влечёт также использование процесса квантования. Квантование может быть как скалярным, так и векторным, тем не менее, большинство схем сжатия на практике используют скалярное квантование вследствие его простоты.
Использование большинства методов сжатия (таких, как дискретное косинусное преобразование и вейвлет-преобразование) влечёт также использование процесса квантования. Квантование может быть как скалярным, так и векторным, тем не менее, большинство схем сжатия на практике используют скалярное квантование вследствие его простоты.


Современное цифровое телевещание стало доступным именно благодаря видео-компрессии. Телевизионные станции могут транслировать не только видео высокой четкости ([[HDTV]]), но и несколько телеканалов в одном физическом телеканале (6 МГц).
Современное цифровое телевещание стало доступным именно благодаря видео-компрессии. Телевизионные станции могут транслировать не только видео высокой четкости ([[HDTV]]), но и несколько телеканалов в одном физическом телеканале (8 МГц).


Хотя большинство видеоконтента сегодня транслируется с использованием стандарта сжатия видео [[MPEG-2]], тем не менее новые и более эффективные стандарты сжатия видео уже используются в телевещании — например [[H.264]] и [[VC-1]].
Хотя большинство видеоконтента сегодня транслируется с использованием стандарта сжатия видео [[MPEG-2]], тем не менее новые и более эффективные стандарты сжатия видео уже используются в телевещании — например [[H.264]] и [[VC-1]].

Версия от 12:09, 31 декабря 2010

Сжатие видео — уменьшение количества данных, используемых для представления видеопотока. Сжатие видео позволяет эффективно уменьшать поток, необходимый для передачи видео по каналам радиовещания, уменьшать пространство, необходимое для хранения данных на носителе. Недостатки: при использования сжатия с потерями появляются характерные, иногда отчётливо видные артефакты — например, блочность (разбиение изображения на блоки 8x8 пикселей), замыливание (потеря мелких деталей изображения) и т. д. Существуют и способы сжатия видео без потерь, но на сегодняшний день они уменьшают данные недостаточно.

Теория

Видео — это по существу трёхмерный массив цветных пикселей. Два измерения означают вертикальное и горизонтальное разрешение кадра, а третье измерение — это время. Кадр — это массив всех пикселей, видимых камерой в данный момент времени, или просто изображение. В видео возможны также так называемые полукадры (см.: чересстрочная развёртка).

Сжатие было бы невозможно, если бы каждый кадр был уникален и расположение пикселов было полностью случайным, но это не так. Поэтому можно сжимать, во-первых, саму картинку — например, фотография голубого неба без солнца фактически сводится к описанию граничных точек и градиента заливки. Во-вторых, можно сжимать похожие соседние кадры. В конечном счёте, алгоритмы сжатия картинок и видео схожи, если рассматривать видео как трёхмерное изображение со временем как третьей координатой.

Сжатие без потерь

Помимо сжатия с потерями видео также можно сжимать и без потерь. Это означает, что при декомпрессии результат будет в точности (бит к биту) соответствовать оригиналу. Однако при сжатии без потерь невозможно достигнуть высоких коэффициентов сжатия на реальном (не искусственном) видео. По этой причине практически всё широко используемое видео является сжатым с потерями. В частности HD DVD и Blu-ray диски и спутниковое вещание также содержат и передают сжатое видео.

Сжатие видео и технология компенсации движения

Одна из наиболее мощных технологий позволяющая повысить степень сжатия — это компенсация движения. Её использование означает, что последующие кадры в потоке используют похожесть областей в предыдущих кадрах для увеличения степени сжатия.

Современное состояние дел

На сегодня практически все алгоритмы сжатия видео (например, стандарты, принятые ITU-T или ISO) используют дискретное косинусное преобразование (DCT) или его модификации для устранения пространственной избыточности. Другие методы, такие как фрактальное сжатие и дискретное вейвлет-преобразование, также были объектами исследований, но сейчас обычно используются только для компресcии неподвижных изображений.

Использование большинства методов сжатия (таких, как дискретное косинусное преобразование и вейвлет-преобразование) влечёт также использование процесса квантования. Квантование может быть как скалярным, так и векторным, тем не менее, большинство схем сжатия на практике используют скалярное квантование вследствие его простоты.

Современное цифровое телевещание стало доступным именно благодаря видео-компрессии. Телевизионные станции могут транслировать не только видео высокой четкости (HDTV), но и несколько телеканалов в одном физическом телеканале (8 МГц).

Хотя большинство видеоконтента сегодня транслируется с использованием стандарта сжатия видео MPEG-2, тем не менее новые и более эффективные стандарты сжатия видео уже используются в телевещании — например H.264 и VC-1.