Двойственное пространство: различия между версиями

Материал из Википедии — свободной энциклопедии
Перейти к навигации Перейти к поиску
[отпатрулированная версия][отпатрулированная версия]
Содержимое удалено Содержимое добавлено
Строка 10: Строка 10:
*: <math>
*: <math>
e_i(x) = e_i(\alpha_1e^1 + \ldots + \alpha_ne^n) = \alpha_i, \quad\forall x\in E.</math>
e_i(x) = e_i(\alpha_1e^1 + \ldots + \alpha_ne^n) = \alpha_i, \quad\forall x\in E.</math>
* Если пространство <math>E</math> [[евклидово пространство|евклидово]], то есть на нём определено [[скалярное произведение]], то существует канонический изоморфизм между <math>E</math> и <math>E^*</math>.
* Если пространство <math>E</math> [[евклидово пространство|евклидово]], то есть оно конечномерно и на нём определено [[скалярное произведение]], то между <math>E</math> и <math>E^*</math> существует так называемый ''канонический изоморфизм'', определённый соотношением
: <math>v \in E \mapsto f \in E^*, \quad f(x) = \langle x, v \rangle, \ \forall x\in E.</math>

* Если пространство <math>E</math> [[Гильбертово пространство|гильбертово]], то по [[Теорема представлений Рисса|теореме Рисса]] существует изоморфизм между <math>E</math> и <math>E^*</math>.
* Если пространство <math>E</math> [[Гильбертово пространство|гильбертово]], то по [[Теорема представлений Рисса|теореме Рисса]] существует изоморфизм между <math>E</math> и <math>E^*</math>.
* В конечномерном случае верно также, что пространство, сопряжённое к сопряжённому <math>E^{**}</math>, совпадает с <math>E</math> (точнее, существует канонический изоморфизм между <math>E</math> и <math>E^{**}</math>).
* В конечномерном случае верно также, что пространство, сопряжённое к сопряжённому <math>E^{**}</math>, совпадает с <math>E</math> (точнее, существует канонический изоморфизм между <math>E</math> и <math>E^{**}</math>).

Версия от 17:12, 12 мая 2016

Сопряжённое пространство или двойственное пространство — пространство линейных функционалов на данном линейном пространстве.

Определение

Пространство всех линейных функционалов, определённых на линейном пространстве , также образует линейное пространство. Это пространство называется сопряжённым к , оно обычно обозначается .

Свойства

  • В конечномерном случае сопряжённое пространство имеет ту же размерность, что и пространство над полем :
    любому базису из можно поставить в соответствие так называемый двойственный (или взаимный) базис из , где функционал  — проектор на вектор :
  • Если пространство евклидово, то есть оно конечномерно и на нём определено скалярное произведение, то между и существует так называемый канонический изоморфизм, определённый соотношением
  • Если пространство гильбертово, то по теореме Рисса существует изоморфизм между и .
  • В конечномерном случае верно также, что пространство, сопряжённое к сопряжённому , совпадает с (точнее, существует канонический изоморфизм между и ).

Обозначения

В конечномерном случае обычно элементы пространства обозначают вектором-столбцом, а элементы  — вектором-строкой [источник не указан 4732 дня]. В тензорном исчислении применяется обозначение для элементов (верхний, или контравариантный индекс) и для элементов (нижний, или ковариантный индекс).

Вариации и обобщения

  • В функциональном анализе, под сопряжённым пространством обычно понимают пространство непрерывных линейных функционалов.
  • Термин сопряжённое пространство может иметь иное значение для линейных пространств над полем комплексных чисел: пространство , совпадающее с как вещественное линейное пространство, но с другой структурой умножения на комплексные числа: