Среднедиэнцефалический организатор

Материал из Википедии — свободной энциклопедии
Перейти к навигации Перейти к поиску

Среднедиэнцефалический организатор, или СДО (англ. mid-diencephalic organizer, MDO) — это эмбриональная структура, образующаяся на границе между будущим таламусом («дорсальным таламусом») и будущим субталамусом (или, иначе говоря, будущим преталамусом, периталамусом, «вентральным таламусом») в процессе развития эмбрионального промежуточного мозга. После своего формирования среднедиэнцефалический организатор управляет всем процессом дальнейшего созревания и зональной организации будущего таламуса и будущего субталамуса.

После завершения процесса эмбрионального созревания и зональной организации таламуса и субталамуса среднедиэнцефалический организатор прекращает своё функционирование, и превращается в так называемую ограниченную внутриталамическую зону (лат. zona limitans intratalamica, ZLI), узкой полоской отделяющую таламус от субталамуса.

Формирование среднедиэнцефалического организатора

[править | править код]

В области стыка между доменами экспрессии белков факторов транскрипции Fez и Otx (то есть на границе между будущим субталамусом, и будущим таламусом), в эмбриональном таламическом комплексе формируется так называемая среднедиэнцефалическая организующая структура, или среднедиэнцефалический организатор (англ. mid-diencephalic organizer, MDO). Среднедиэнцефалический организатор является своего рода «дирижёром оркестра», главным организатором всего последующего процесса эмбрионального развития таламуса и субталамуса, рассылающим необходимые для правильной дифференцировки клеток ядер таламуса и субталамуса межклеточные сигналы. Отсутствие среднедиэнцефалического организатора приводит к отсутствию таламуса и нередко также субталамуса в развивающемся мозге эмбриона. Сам среднедиэнцефалический организатор созревает в процессе эмбрионального развития таламического комплекса в направлении от более вентральных его частей, созревающих раньше, к более дорсальным, которые созревают позже. Белки, принадлежащие к семействам SHH и Wnt, являются главными регуляторными и дифференцировочными сигналами, испускаемыми средне-диэнцефалическим организатором.

Кроме своей функции как «дирижёра оркестра», управляющего всем процессом дальнейшего эмбрионального развития таламуса и субталамуса, среднедиэнцефалический организатор впоследствии созревает в особую гистологическую структуру внутри таламуса, так называемую «ограниченную внутриталамическую зону» (лат. zona limitans intrathalamica (ZLI)).

Функции среднедиэнцефалического организатора

[править | править код]

Сразу после своего первоначального образования, среднедиэнцефалический организатор начинает выполнять свою роль главного дирижёра всего дальнейшего процесса эмбрионального развития таламуса и преталамуса из зачаточного таламического комплекса. Эту роль он выполняет, выделяя такие сигнальные молекулы, как SHH.[1] У мышей и других млекопитающих, функциональную роль сигнальных молекул белка SHH, выделяемых среднедиэнцефалическим организатором, в дирижировании процессом дальнейшего эмбрионального развития таламуса и преталамуса из зачаточного таламического комплекса, непосредственно выяснить не удалось, поскольку генетическая мутация, приводящая к отсутствию функционального белка SHH, приводит к полному отсутствию у развивающегося зародыша даже не только зачатков таламического комплекса, но и всего диэнцефалона.[2]

Тем не менее, исследования на развивающихся эмбрионах курицы показали, что экспрессия среднедиэнцефалическим организатором сигнального белка SHH является одновременно и необходимым, и достаточным условием для последующей индукции экспрессии генов, управляющих дифференцировкой клеток таламуса и преталамуса, и, соответственно, для их правильного развития.[3] Исследования на другом модельном организме, рыбках данио-рерио, показали, что экспрессия двух генов семейства SHH, так называемых SHH-a и SHH-b (ранее также известного как twhh), определяет границы зоны среднедиэнцефалического организатора, и что сигнальные молекулы SHH необходимы и достаточны для начальной индукции молекулярной дифференцировки клеток будущего таламуса и преталамуса, но не являются обязательными для их дальнейшего поддержания и созревания. Кроме того, исследования на рыбках данио-рерио показали, что сигнальные молекулы SHH, исходящие из среднедиэнцефалического организатора, необходимы и достаточны для индукции дальнейшей дифференцировки и созревания как таламуса, так и преталамуса, в то время как сигналы SHH, исходящие из более вентральных по отношению к развивающимся таламусу и преталамусу областей мозга, большого значения для развития этих структур не имеют, и отсутствие вентрально исходящих сигналов SHH не приводит к нарушению развития таламуса и/или преталамуса, в отличие от сигналов SHH, исходящих от среднедиэнцефалического организатора.[4]

Воздействие градиента экспрессии белка SHH, продуцируемого среднедиэнцефалическим организатором, приводит к дифференцировке нейронов будущего таламуса и преталамуса. Градиент экспрессии белка SHH, продуцируемого среднедиэнцефалическим организатором, вызывает формирование волны градиента экспрессии белка пронейрального гена нейрогенина-1, распространяющейся в направлении от задней части к передней, в основном (каудальном) домене таламического зачатка, и одновременно — формирование волны градиента экспрессии белка Ascl1 (ранее известного как Mash1) в оставшейся узкой полоске рострально расположенных клеток таламического зачатка, непосредственно прилегающей к среднедиэнцефалическому организатору (то есть в ростральном домене таламического зачатка), и в преталамусе.[5][6]

Формирование этих специфических зональных градиентов экспрессии тех или иных пронейральных белков приводит к дальнейшей дифференцировке глутаматергических «релейно-ретрансляторных» нейронов из расположенных в каудальном домене таламического зачатка нейрогенин-1-положительных клеток-предшественников, и к дифференцировке ГАМКергических ингибирующих нейронов из расположенных в ростральном домене таламического зачатка, непосредственно прилегающем к средне-диэнцефалическому организатору, и в преталамусе Ascl1-положительных клеток-предшественников. У рыб выбор одного из этих двух альтернативных путей дифференцировки для каждой конкретной клетки-предшественника в той или иной зоне зачаточного таламического комплекса управляется динамической экспрессией белка Her6, являющегося гомологом белка HES1 человека. Экспрессия этого фактора транскрипции, относящегося к семейству «волосообразных» белков bHLH, приводит к подавлению экспрессии гена нейрогенина-1, однако необходима для поддержания и усиления экспрессии белка Ascl1. В процессе дальнейшего эмбрионального развития таламического зачатка экспрессия белка Her6 и, соответственно, связанное с ним подавление экспрессии белка нейрогенина-1 и усиление экспрессии белка Ascl1 постепенно исчезает в каудальном домене таламического зачатка, в то время как в преталамусе и в узкой полоске рострально расположенных таламических клеток, примыкающей к среднедиэнцефалическому организатору, экспрессия белка Her6 и, соответственно, подавление экспрессии белка нейрогенина-1 и усиление экспрессии Ascl1 усиливается и нарастает. Это делает каудально-ростральный градиент экспрессии нейрогенина-1/Ascl1 более выраженным, границы доменов более чёткими, и способствует завершению созревания и дифференцировки клеток таламуса и преталамуса. Исследования на развивающихся эмбрионах курицы и мыши показали, что блокада сигнального пути белка SHH в этот период эмбрионального развития приводит к полному отсутствию рострального домена таламического зачатка и к значительному уменьшению размеров каудального домена таламического зачатка. Ростральный домен таламического зачатка даёт начало ГАМКергическим ингибирующим нейронам таламуса, расположенным в основном в ретикулярном ядре таламуса взрослых животных, в то время как каудальный домен таламического зачатка даёт начало глутаматергическим «релейно-ретрансляторным» нейронам, составляющим основную часть клеток таламуса, и подвергающимся дальнейшей дифференцировке с образованием отдельных таламических ядер и групп ядер.[7]

Было показано, что у человека часто встречающаяся генетическая вариация в области промотора гена белка транспортера серотонина (SERT), а именно, обладание длинной (SERT-long) или короткой (SERT-short) аллелями этого гена (гена 5-HTTLPR), влияет как на эмбриональное, так и на последующее (постэмбриональное) развитие и созревание определённых областей таламуса и на их конечный размер у взрослых. Люди, у которых имеется две «коротких» аллели гена 5-HTTLPR (SERT-ss), имеют больше нейронов в пульвинарном ядре таламуса и более крупный размер этого ядра, а также, возможно, больше нейронов и более крупный размер лимбических ядер таламуса (ядер, поддерживающих связь с эмоциональными центрами лимбической системы), по сравнению с гетерозиготами по этому гену или обладателями двух «длинных» аллелей гена 5-HTTLPR. Увеличение размеров этих структур таламуса у таких людей предполагается в качестве части анатомического объяснения того, почему люди, у которых имеется две «коротких» аллели гена 5-HTTLPR, в большей мере, чем люди, гетерозиготные по этому гену или обладающие двумя «длинными» аллелями гена 5-HTTLPR, предрасположены к таким психическим расстройствам, как большое депрессивное расстройство, посттравматическое стрессовое расстройство (ПТСР), а также к суицидальным тенденциям и попыткам.[8]

Примечания

[править | править код]
  1. Puelles, L; Rubenstein, J. L. Forebrain gene expression domains and the evolving prosomeric model (англ.) // Trends in Neurosciences[англ.] : journal. — Cell Press, 2003. — Vol. 26, no. 9. — P. 469—476. — doi:10.1016/S0166-2236(03)00234-0. — PMID 12948657.
  2. Ishibashi, M; McMahon, A. P. A sonic hedgehog-dependent signaling relay regulates growth of diencephalic and mesencephalic primordia in the early mouse embryo (англ.) // Development : journal. — 2002. — Vol. 129, no. 20. — P. 4807—4819. — PMID 12361972.
  3. Kiecker, C; Lumsden, A. Hedgehog signaling from the ZLI regulates diencephalic regional identity (англ.) // Nature Neuroscience : journal. — 2004. — Vol. 7, no. 11. — P. 1242—1249. — doi:10.1038/nn1338. — PMID 15494730.
  4. Scholpp, S.; Wolf, O; Brand, M; Lumsden, A. Hedgehog signalling from the zona limitans intrathalamica orchestrates patterning of the zebrafish diencephalon (англ.) // Development : journal. — 2006. — Vol. 133, no. 5. — P. 855—864. — doi:10.1242/dev.02248. — PMID 16452095.
  5. Scholpp, S.; Delogu, A.; Gilthorpe, J.; Peukert, D.; Schindler, S.; Lumsden, A. Her6 regulates the neurogenetic gradient and neuronal identity in the thalamus (англ.) // Proceedings of the National Academy of Sciences of the United States of America : journal. — 2009. — Vol. 106, no. 47. — P. 19895—19900. — doi:10.1073/pnas.0910894106. — PMID 19903880. — PMC 2775703.
  6. Vue, Tou Yia; Bluske, Krista; Alishahi, Amin; Yang, Lin Lin; Koyano-Nakagawa, Naoko; Novitch, Bennett; Nakagawa, Yasushi. Sonic Hedgehog Signaling Controls Thalamic Progenitor Identity and Nuclei Specification in Mice (англ.) // Journal of Neuroscience[англ.] : journal. — 2009. — Vol. 29, no. 14. — P. 4484—4497. — doi:10.1523/JNEUROSCI.0656-09.2009. — PMID 19357274. — PMC 2718849.
  7. Scholpp, Steffen; Lumsden, Andrew. Building a bridal chamber: Development of the thalamus (англ.) // Trends in Neurosciences[англ.] : journal. — Cell Press, 2010. — Vol. 33, no. 8. — P. 373—380. — doi:10.1016/j.tins.2010.05.003. — PMID 20541814. — PMC 2954313.
  8. Young, Keith A.; Holcomb, Leigh A.; Bonkale, Willy L.; Hicks, Paul B.; Yazdani, Umar; German, Dwight C. 5HTTLPR Polymorphism and Enlargement of the Pulvinar: Unlocking the Backdoor to the Limbic System (англ.) // Biological Psychiatry[англ.] : journal. — 2007. — Vol. 61, no. 6. — P. 813—818. — doi:10.1016/j.biopsych.2006.08.047. — PMID 17083920.