Постоянная интегрирования

Материал из Википедии — свободной энциклопедии
Перейти к навигации Перейти к поиску

В математическом анализе неопределенный интеграл от заданной функции (то есть множества всех первообразных функции) в связанной области определяется только с точностью до аддитивной постоянной константы интегрирования. Эта константа выражает неоднозначность, присущую при взятии первообразных. определена на интервале, и является первообразной , тогда множество всех первообразных от задается функциями , где C — произвольная постоянная (это означает, что любое значение для C делает действительной первообразную). Для простоты константа интегрирования в списках интегралов иногда опускается.

Происхождение[править | править код]

Производная любой постоянной функции равна нулю. Если для функции найдена одна первообразная , то добавление или вычитание любой константы C даст нам ещё одну первообразную, поскольку . Константа — это способ выражения того, что каждая функция с хотя бы одной первообразной имеет бесконечное число из них.

Пусть , и это две повсеместно дифференцируемые функции. Предположим, что для каждого действительного числа x. Тогда существует действительное число C такое, что для каждого действительного числа x. Чтобы доказать это, обратите внимание, что . Таким образом, F можно заменить на F-G и G на постоянную функцию 0, чтобы доказать, что везде дифференцируемая функция, производная которой всегда равна нулю, должна быть постоянной: . Для любого x из основной теоремы Математического анализа, вместе с предположением, что производная от F обращается в нуль, означает, что

следовательно, F постоянная функция.

Два факта имеют решающее значение в этом доказательстве. Во-первых, настоящая линия связана. Если бы действительная линия не была связана, мы не всегда могли бы интегрировать от нашего фиксированного a до любого данного x. Например, если бы мы взяли функции, определённые для объединения интервалов [0,1] и [2,3], и если бы a было 0, то было бы невозможно интегрировать от 0 до 3, потому что функция не определено между 1 и 2. Здесь будут две константы, по одной для каждого подключенного компонента домена. В общем случае, заменяя константы локально постоянными функциями, мы можем распространить эту теорему на несвязные области. Например, есть две константы интеграции для и бесконечно много для так, например, общая форма для интеграла 1/х:

Во-вторых, предполагалось, что F и G всюду дифференцируемы. Если F и G не дифференцируемы хотя бы в одной точке, теорема не выполняется. В качестве примера, давайте будет функцией Хевисайда, которая равна нулю для отрицательных значений x и единице для неотрицательных значений x, и пусть Тогда производная от F равна нулю там, где она определена, а производная от G всегда равна нулю. Тем не менее ясно, что F и G не отличаются постоянной величиной. Даже если предположить, что F и G всюду непрерывны и почти всюду дифференцируемы, теорема все ещё не выполняется. В качестве примера возьмем F в качестве функции Кантора и снова пусть G = 0.

Например, предположим, что кто-то хочет найти первообразные . Одна такая первообразная это . Другая — Третья — . Каждая из них имеет производную , поэтому они все являются первообразными от Оказывается, что сложение и вычитание констант — это единственная гибкость, которую мы имеем при поиске различных первообразных одной и той же функции. То есть все первообразные одинаковые с точностью до константы. Чтобы выразить этот факт для cos(x), мы пишем:

Замена С на число произведет первообразную. Однако, написав C вместо числа, получается компактное описание всех возможных первообразных cos(x). C называется константой интегрирования. Легко определить, что все эти функции действительно являются производными от

Необходимость[править | править код]

На первый взгляд может показаться, что константа не нужна, поскольку её можно обнулить. Кроме того, при оценке определённых интегралов с использованием фундаментальной теоремы математического анализа постоянная всегда будет аннулироваться сама собой. Однако попытка установить константу равной нулю не всегда имеет смысл. Например, может быть интегрирован как минимум тремя различными способами:

Таким образом, обнуление C все ещё может оставить константу. Это означает, что для данной функции не существует «Простейшей Первообразной».

Другая проблема с установкой C равным нулю состоит в том, что иногда мы хотим найти первообразные, которые имеют заданное значение в данной точке (как в задаче с начальным значением). Например, чтобы получить первообразную которая имеет значение 100 при x = π, тогда будет работать только одно значение C (в этом случае C = 100).

Это ограничение можно перефразировать на языке дифференциальных уравнений. Нахождение неопределенного интеграла функции это то же самое, что решение дифференциального уравнения Любое дифференциальное уравнение будет иметь много решений, и каждая константа представляет собой единственное решение правильно поставленной задачи начального значения. Наложение условия, что наша первообразная значение принимает значение 100 при x = π, является начальным условием. Каждое начальное условие соответствует одному и только одному значению C, поэтому без C было бы невозможно решить проблему.

Есть ещё одно обоснование, исходя из абстрактной алгебры. Пространство всех (подходящих) вещественных функций на действительных числах является векторным пространством, а дифференциальный оператор это линейный оператор. Оператор отображает функцию, равную нулю, если и только если эта функция постоянна. Следовательно, ядро пространство всех постоянных функций. Процесс неопределенной интеграции сводится к нахождению прообраза данной функции. Для данной функции нет канонического прообраза, но множество всех таких прообразов образует смежный класс. Выбор константы аналогичен выбору элемента смежного класса. В этом контексте решение проблемы начальных значений интерпретируется как лежащий в гиперплоскости, заданной начальными условиями.

Физический смысл[править | править код]

Рассмотрим некоторые примеры.

  • Тело падает с пятого этажа дома на землю, пролетая некоторое расстояние. Затем то же самое тело падает с девятого этажа на балкон пятого и пролетает то же самое расстояние, несмотря на разницу начального положения. Изменением силы тяжести на высоте дома пренебрегаем. В данном примере постоянная интегрирования задаёт начальное положение тела (номер этажа).
  • Автомобиль едет по прямой трассе с некоторой переменной скоростью. Если в начале движения переставить автомобиль в другое место трассы, он проедет тот же путь.
  • Лошадь везёт сани по ровному полю. Независимо от того, в каком месте поля находится лошадь, она проделает одинаковую работу по перетаскиванию саней (расстояние, пройденное лошадью, должно быть одинаково).
  • Вода выливается из цилиндрического сосуда через отверстие в дне. Уровень в сосуде понижается на 10 см. Независимо от того, до какого уровня сосуд был наполнен изначально, одинаковый объём истекшей воды понижает уровень на 10 см.
  • Напряжение на конденсаторе меняется от 1 вольта до 0 вольт. Затем напряжение на том же конденсаторе меняется от 1000 вольт до 999 вольт. В обоих случаях прошедший через конденсатор заряд одинаков.
  • Тело остывает с 1°С до 0°С. То же тело остывает с 1000°С до 999°С. Если пренебречь зависимостью теплоемкости от температуры, то тело в обоих случаях теряет одинаковое количество тепла.

Литература[править | править код]

  • Stewart, James (2008). Calculus: Early Transcendentals (6th ed.). Brooks/Cole. ISBN 0-495-01166-5.
  • Larson, Ron; Edwards, Bruce H. (2009). Calculus (9th ed.). Brooks/Cole. ISBN 0-547-16702-4.
  • «Reader Survey: log|x| + C», Tom Leinster, The n-category Café, March 19, 2012
  • Banner, Adrian (2007). The calculus lifesaver : all the tools you need to excel at calculus. Princeton [u.a.]: Princeton University Press. p. 380. ISBN 978-0-691-1308