Биоинспирированные алгоритмы: различия между версиями

Материал из Википедии — свободной энциклопедии
Перейти к навигации Перейти к поиску
Содержимое удалено Содержимое добавлено
Новая страница: «'''Биоинспирированные алгоритмы''' — алгоритмы, область исследования которых с…»
(нет различий)

Версия от 12:19, 22 ноября 2017

Биоинспирированные алгоритмы — алгоритмы, область исследования которых свободно объединяет подразделы, относящиеся к темам связности, социального поведения и возникновения. Они часто тесно сопряжены с областью искусственного интеллекта, поскольку их занятия могут быть связаны с машинным обучением. Они опираются в основном на области биологии, информатики и математики. Если говорить кратко, использование компьютеров для моделирования живых явлений и одновременное изучение жизни для улучшения использования компьютеров.

История

Первые работы по симуляции эволюции были проведены в 1954 году Нильсом Баричелли на компьютере, установленном в Институте перспективных исследований Принстонского университета.[1][2] Его работа, опубликованная в том же году, привлекла широкое внимание общественности. С 1957 года,[3] австралийский генетик Алекс Фразер опубликовал серию работ по симуляции искусственного отбора среди организмов с множественным контролем измеримых характеристик. Положенное начало позволило компьютерной симуляции эволюционных процессов и методам, описанным в книгах Фразера и Барнелла(1970)[4] и Кросби (1973)[5], с 1960-х годов стать более распространенным видом деятельности среди биологов. Симуляции Фразера включали все важнейшие элементы современных генетических алгоритмов. Вдобавок к этому, Ганс-Иоахим Бремерманн в 1960-х опубликовал серию работ, которые также принимали подход использования популяции решений, подвергаемой рекомбинации, мутации и отбору, в проблемах оптимизации. Исследования Бремерманна также включали элементы современных генетических алгоритмов.[6] Среди прочих пионеров следует отметить Ричарда Фридберга, Джорджа Фридмана и Майкла Конрада. Множество ранних работ были переизданы Давидом Б. Фогелем (1998).[7]

Хотя Баричелли в своей работе 1963 года симулировал способности машины играть в простую игру,[8] искусственная эволюция стала общепризнанным методом оптимизации после работы Инго Рехенберга и Ханса-Пауля Швефеля в 1960-х и начале 1970-х годов двадцатого века — группа Рехенсберга смогла решить сложные инженерные проблемы согласно стратегиям эволюции.[9][10][11][12] Другим подходом была техника эволюционного программирования Лоренса Дж. Фогеля, которая была предложена для создания искусственного интеллекта. Эволюционное программирование первоначально использовавшее конечные автоматы для предсказывания обстоятельств, и использовавшее разнообразие и отбор для оптимизации логики предсказания. Генетические алгоритмы стали особенно популярны благодаря работе Джона Холланда в начале 70-х годов и его книге «Адаптация в естественных и искусственных системах» (1975)[13]. Его исследование основывалось на экспериментах с клеточными автоматами, проводившимися Холландом и на его трудах написанных в университете Мичигана. Холланд ввел формализованный подход для предсказывания качества следующего поколения, известный как Теорема схем. Исследования в области генетических алгоритмов оставались в основном теоретическими до середины 80-х годов, когда была, наконец, проведена Первая международная конференция по генетическим алгоритмам в Питтсбурге, Пенсильвания (США).

С ростом исследовательского интереса существенно выросла и вычислительная мощь настольных компьютеров, это позволило использовать новую вычислительную технику на практике. В конце 80-х, компания General Electric начала продажу первого в мире продукта, работавшего с использованием генетического алгоритма. Им стал набор промышленных вычислительных средств. В 1989, другая компания Axcelis, Inc. выпустила Evolver — первый в мире коммерческий продукт на генетическом алгоритме для настольных компьютеров. Журналист The New York Times в технологической сфере Джон Маркофф писал[14] об Evolver в 1990 году.

Описание алгоритмов

  1. Одним из биоинспирированных подходов является метод роевого интеллекта включающий в себя муравьиные алгоритмы, пчелиные алгоритмы, метод роя частиц, алгоритм капель воды и др.

Роевой интеллект описывает коллективное поведение децентрализованной самоорганизующейся системы, которая состоит из множества агентов, локально взаимодействующих между собой и с окружающей средой. Агенты обычно довольно просты, но, локально взаимодействуя, вместе создают, так называемый, роевой интеллект.

  1. Пчелиный алгоритм − это оптимизационный алгоритм, в основе которого лежит поведение пчёл в живой природе.

Применительно к задаче оптимизации в пчелином алгоритме каждое решение представляется в виде пчелы, которая знает (хранит) расположение (координаты или параметры многомерной функции) какого-то участка.

  1. Barricelli, Nils Aall (1954). "Esempi numerici di processi di evoluzione". Methodos: 45—68.
  2. Barricelli, Nils Aall (1957). "Symbiogenetic evolution processes realized by artificial methods". Methodos: 143—182.
  3. Fraser, Alex (1957). "Simulation of genetic systems by automatic digital computers. I. Introduction". Aust. J. Biol. Sci. 10: 484—491.
  4. Fraser, Alex. Computer Models in Genetics. — New York : McGraw-Hill, 1970. — ISBN 0-07-021904-4.
  5. Crosby, Jack L. Computer Simulation in Genetics. — London : John Wiley & Sons, 1973. — ISBN 0-471-18880-8.
  6. 02.27.96 — UC Berkeley’s Hans Bremermann, professor emeritus and pioneer in mathematical biology, has died at 69
  7. Fogel, David B. (editor). Evolutionary Computation: The Fossil Record. — New York : IEEE Press, 1998. — ISBN 0-7803-3481-7.
  8. Barricelli, Nils Aall (1963). "Numerical testing of evolution theories. Part II. Preliminary tests of performance, symbiogenesis and terrestrial life". Acta Biotheoretica (16): 99—126.
  9. Rechenberg, Ingo. Evolutionsstrategie. — Holzmann-Froboog, 1973. — ISBN 3-7728-0373-3.
  10. Schwefel, Hans-Paul. Numerische Optimierung von Computer-Modellen (PhD thesis). — 1974.
  11. Schwefel, Hans-Paul. Numerische Optimierung von Computor-Modellen mittels der Evolutionsstrategie : mit einer vergleichenden Einführung in die Hill-Climbing- und Zufallsstrategie. — Birkhäuser, 1977. — ISBN 3-7643-0876-1.
  12. Schwefel, Hans-Paul. Numerical optimization of computer models (Translation of 1977 Numerische Optimierung von Computor-Modellen mittels der Evolutionsstrategie. — Wiley, 1981. — ISBN 0-471-09988-0.
  13. J. H. Holland. Adaptation in natural and artificial systems. University of Michigan Press, Ann Arbor, 1975.
  14. Markoff, John (1990-08-29). "What's the Best Answer? It's Survival of the Fittest". New York Times. Дата обращения: 9 августа 2009. {{cite news}}: Проверьте значение даты: |year= / |date= mismatch (справка)