Графическая вероятностная модель

Материал из Википедии — свободной энциклопедии
Перейти к: навигация, поиск

Графическая вероятностная модель — это вероятностная модель, в которой в виде графа представлены зависимости между случайными величинами. Вершины графа соответствуют случайным переменным, а рёбра — непосредственным вероятностным взаимосвязям между случайными величинами. Графические модели широко используются в теории вероятностей, статистике (особенно в Байесовской статистике), а также в машинном обучении.

Виды графических моделей[править | править вики-текст]

Байесовская сеть[править | править вики-текст]

Байесовская сеть представляет случай графической модели с ориентированным ациклическим графом, при этом ориентированные рёбра кодируют отношения вероятностной зависимости между переменными.

По байесовской сети легко записывается совместное распределение переменных: если события (случайные величины) обозначаются как

X_1,\ldots,X_n

тогда совместное распределение удовлетворяет уравнению

P[X_1,\ldots,X_n]=\prod_{i=1}^nP[X_i|pa_i]

где pa_i множество вершин-предков вершины X_i. Другими словами, совместное распределение представляется в виде произведения условных атомарных распределений, который обычно известны. Любые две вершины, не соединённые ребром, условно независимы, если известно значение их предков. В общем, любые два набора вершин условно независимы при заданных значениях третьего множества вершин, если в графе выполняется условие d-разделимости. Локальная и глобальная независимость эквивалентны в Байесовской сети

Важный частный случай байесовской сети - скрытая марковская модель

Марковские случайные поля[править | править вики-текст]

Марковские случайные поля задаются неориентированным графом. В отличие от байесовских сетей, они могут содержать циклы.

С помощью марковских случайных полей, можно удобно представлять изображения, используя сеточную структуру, что позволяет решать, например, задачу фильтрации шума на изображении.

Другие виды графических моделей[править | править вики-текст]

  • фактор-граф — неориентированный двудольный граф, в котором рёбрами соединены факторы и случайные переменные. Каждый фактор представляет вероятностное распределения для всех переменных, которые он связывает. Графы переводят в форму фактор-графа, например, для возможности использования алгоритма belief propagation.
  • цепной граф — это граф, который может содержать как направленные, так и ненаправленные рёбра, но без ориентированных циклов (то есть если мы начнём движение в какой-то вершине и будем двигаться по графу только по ориентированным рёбрам, то мы не сможем вернуться в ту вершину, из которой мы начали путь). И ориентированные и неориентированные графы являются частным случаем цепных графов, которые могут служить обобщением Байесовских и Марковских сетей
  • условное случайное поле — дискриминативная модель, заданная на неориентированном графе

Приложения[править | править вики-текст]

Графические модели используются в задачах извлечения информации, распознавания речи, компьютерного зрения, декодирования кодов с малой плотностью проверок на чётность, обнаружения генов и диагностики болезней.

Ссылки[править | править вики-текст]