Ионизатор

Материал из Википедии — свободной энциклопедии
Перейти к: навигация, поиск

Ионизатор — устройство для получения свободных ионов.

Терминология[править | править вики-текст]

Терминология, укрепившаяся в мировой науке:

Ионы атмосферы были названы А. Л.Чижевским аэроионами,

процесс их возникновения – аэроионизацией,

искусственное насыщение ими воздуха закрытых помещений – аэроионификацией', лечение ими – аэроионотерапией.

Виды ионизаторов[править | править вики-текст]

Ионизаторы работают или на высоком напряжении (несколько тыс. вольт) с коронным разрядом на электродах, или от источника ионизирующего излучения на ультрафиолетовом излучении, или на радиоактивных изотопах. Поток ионов достигает зачастую 1 µA, что соответствует нескольким миллиардам ионов в секунду.

Основными частями аэроионизационных установок являются ионизирующие электроды и источники высоковольтного питания аэроионизаторов, устройства автоматики и техники безопасности. Ионизирующие электроды бывают двух типов: игольчатые (остриевые) и проволочные.

Было создано большое количество аэроионизаторов различных типов, к ним относятся:

термоэлектронные аэроионизаторы Ф.Г.Портнова и Д.Л.Вильчевского, Я.Ю.Рейнета и др., В.И.Грачева и А.К.Тумана;
- радиоизотопные аэроионизаторы А.Б.Вериго и В.А.Подерни, Ц.И.Штейнбока, «Сигма»;
- радиоактивные аэроионизаторы Института ядерных исследований АН УССР «ИВА 1» и «ИВА 2»;
- фотоэлектрические аэроионизаторы Я.Ю.Рейнета и А.К.Тумана;
- гидродинамические аэроионизаторы (гидроаэроионизаторы) А.А.Микулина, Е.А.Чернявского, Д.К.Пислегина и др.;
- коронные (эффлювиальные) аэроионизаторы Д.П.Соколова, А.Л.Чижевского, «АИР-2», «Рига», «Рязань-101», ЭФА, «Зовуни», «Айна», «Электроника».

Ультрафиолетовые аэроионизаторы[править | править вики-текст]

Ультрафиолетовые аэроионизаторы при различных источниках ультрафиолетового света давали исключительно большое количество озона и окислов азота. Уже через несколько минут после включения кварцевой лампы в воздухе количество вредных газов в десятки и сотни раз превосходит допустимое значение. Для физиологических опытов ультрафиолетовые ионизаторы непригодны.

Гидроионизаторы[править | править вики-текст]

Нельзя путать аэроионы с аэрозолями. Эта грубая ошибка привела к появлению так называемых гидроионизаторов (генераторов электростатически заряженной водяной пыли), не имеющих ничего общего с аэроионизаторами (генераторами ионизированного воздуха). Путаница, обусловленная инженерно-физической некомпетентностью, привела к многим недоразумениям и, в частности, затормозила внедрение метода аэроионизации. Например, в нашей стране широкое применение нашли гидродинамические «аэроионизаторы» типа «Комфорт» (А.А.Микулина), которые вырабатывали большое количество тяжелых ионов, совершенно не вырабатывали легкие отрицательные ионы кислорода воздуха, плохо управлялись, требовали наличия дистиллированной воды и создавали ощущения холода, особенно в зимнее время. В настоящее время, так называемые «гидроаэроионизаторы» сняты с производства. Другое дело, когда применяются медикаментозные электроаэрозоли и мелкодисперсное распыление жидкости, но это уже иная область.

Ионизаторы на коронном разряде[править | править вики-текст]

Ионизатор на коронном разряде

Ионизаторы этого типа оснащены заострёнными электродами, которые посредством коронного разряда и электростатической эмиссии образуют ионы в непосредственной близости от электродов. Данные приборы бывают двух типов:

  • нерегулируемые — работают в постоянном режиме и бесконтрольно образуют новые ионы;
  • регулируемые — изменяют напряжение на электродах в зависимости от электрического поля в окружении.

Оба типа ионизаторов применяются как для получения определённого заряда, так и для отвода или предотвращения нежелательных электростатических зарядов. Чтобы получить возможность располагать ионизаторы на возможно большем расстоянии к разряжаемой (заряжаемой) поверхности (до 2 м), они снабжаются воздуходувами (внешними или встроенными) — таким образом, ионизированный воздух, а с ним и электрический заряд, подводится к нужному месту (например в печатных станках)[1]. Коронарные ионизаторы зачастую выполняются в виде гребёнчатых реек; они получают питание от источников переменного или постоянного тока. При подключении к переменному току подключаются все наконечники гребёнок; при постоянном токе к соседним наконечникам подводят напряжение разных знаков.

В копировальных аппаратах и лазерных принтерах применяется ионизаторы постоянного тока (переменный ток проходит через выпрямители) — в них ионизаторы служат для бесконтактной электростатической зарядки фотовала.

Ионизаторы на излучении[править | править вики-текст]

Ультрафиолетовое излучение, альфа-, бета-, рентгеновское- и гамма-излучения также воспроизводят ионы. Ультрафиолетовые излучатели применялись в медицинских учреждениях для дезинфекции. На сегодняшний день они применяются для очистки питьевой воды, отверждения лаков, смол и полимеров, но основное действие здесь производят не ионы, а фотоны высоких энергий, разрушающие молекулы облучаемого вещества и производящие эффект разрушения поверхностного слоя.

Радиоактивные изотопы (радионуклиды) применяются в ионизационных пожарных датчиках для обнаружения ионов абсорбционных веществ (дымов, аэрозолей); при этом проводимость воздуха измеряется посредством ионизации — проводимость воздуха повышается при наличии в нём органических газов, дымов или аэрозолей.

Применение[править | править вики-текст]

Снятие электростатического напряжения[править | править вики-текст]

Ионизация в домашних приборах[править | править вики-текст]

В продаже доступны сушилки для волос (фены)[2], пылесосы[3], увлажнители воздуха[4], клавиатуры[5] и даже ноутбуки[6] со встроенными ионизаторами, обещающими оказать антистатическое действие.
Ионизация воздуха в жилых помещениях производится в основном биполярными ионизаторами воздуха, что входит в понятие микроклимат помещений.

Коронная обработка полимеров[править | править вики-текст]

Процесс заключается в поверхностном шероховании и активации диэлектрических поверхностей посредством коронного разряда с целью увеличения притяжения и улучшения слипания. После такой обработки, а у некоторых полимеров только после неё, на поверхности может быть нанесено покрытие (ламинирование, покраска, грунтовка и т. п.)

Обработка воздуха и воды[править | править вики-текст]

Очистка воздуха[править | править вики-текст]

Ионизатор воздуха вырабатывает отрицательно заряженные ионы, в то время как застоявшийся (использованный) воздух содержит больше положительных ионов. Аргументация производителей ионизаторов воздуха сводится к тому, что чистый природный воздух содержит больше отрицательных ионов (на природе, особенно в горах, лесах, вблизи водопадов). Пыль, копоть, дым, пыльца растений, бактерии, аллергены и все твердые частицы воздуха заряжаются под воздействием ионизатора воздуха и начинают медленно дрейфовать к плюсовому электроду, в качестве которого выступают стены, потолок, пол, где и оседают. Воздух помещений очищается, но все загрязнения придется удалять со всех окружающих предметов и конструкций, это портит внешний вид комнат и считается недостатком люстр Чижевского. В противовес этому, производители приводят следующий аргумент: все то, что оседает на стены, потолок, пол, предметы без ионизатора воздуха находится в воздухе и человек это вдыхает. Ионизация воздуха инициирует реакции осаждения зловонных газов и аэрозолей. Так, сосуд, наполненный дымом, внезапно делается совершенно прозрачным, если внести в него острые металлические электроды, соединенные с электрической машиной, а все твёрдые и жидкие частицы будут осаждаться на электродах. Объяснение опыта заключается в следующем: как только между электродами зажигается коронный разряд, воздух внутри трубки сильно ионизируется. Ионы воздуха заряжают частицы пыли. Заряженные частицы пыли движутся под действием поля к электродам, где и оседают.

Согласно санитарно-гигиеническим нормам допустимых уровней ионизации воздуха (СанПиН 2.2.4.1294-2003 от 16 июня 2003 года), минимально допустимая концентрация ионов в воздухе производственных и общественных помещений должна составлять 400 положительных или 400 отрицательных ионов на см³ воздуха. Максимальная же концентрация регламентируется на уровне 50 000 положительных или 50 000 отрицательных ионов на см³ воздуха. Для создания и поддержания необходимого аэроионного состава воздуха используют ионизаторы воздуха.

Люстра Чижевского[править | править вики-текст]

Советский биофизик А. Л. Чижевский экспериментально установил факт противоположного физиологического действия положительных и отрицательных ионов в воздухе на живые организмы, применил искусственную аэроионификацию. Впоследствии Чижевским был создан электронный прибор — аэроионификатор, повышающий концентрацию отрицательных аэроионов кислорода в воздухе. В настоящее время, в честь изобретателя, этот прибор называют «люстрой Чижевского» (по конструкции прибор напоминает люстру и предназначен для подвешивания на потолок). Следует отметить отрицательное отношение А.Л.Чижевского о целесообразности производства некоторых типов аэроионизаторов, применяемых для медицинских и гигиенических целей. Ученый писал: «Для создания легких аэроионов кислорода воздуха, благотворно влияющих на людей и очищающих воздух населенных помещений, ни в коем случае не могут быть использованы многочисленные ионизаторы, предлагаемые разными изобретателями. Для этих целей совершенно непригодны гидроионы, а также ионы, получаемые в результате действия на молекулы воздуха опасных для здоровья радиоактивных или ионизирующих излучений». Только А.Л.Чижевский проводил медицинские, ветеринарные и сельскохозяйственные опыты с электроэффлювиальной люстрой, скрупулезно подсчитывая вырабатываемое количество легких и тяжелых аэроионов.

В качестве генератора аэроионов А.Л.Чижевским еще в 1931 г. была предложена конструкция электроэффлювиальной люстры. Принципиальная схема его сравнительно проста. Рабочим органом служит электроэффлювиальная (от греч. «эффлювий» – истекаю) люстра, соединенная с высоковольтным источником отрицательной полярности. Люстра представляет собой легкий металлический обод, на котором натянута по двум перпендикулярным осям проволока. Она образует часть сферы – сетку, выступающую вниз. В узлах сетки припаиваются иглы (длиной до 50 мм и толщиной до 1 мм). Степень их заточенности должна быть максимальной, так как истечение тока с острия увеличивается, а возможность образования озона уменьшается. Для эффективной генерации аэроионов подаваемое напряжение отрицательной полярности должно быть не ниже 25 кВ. Для обеспечения безопасности ток на люстре должен быть ниже 0,03 А (на выходе перед люстрой ставится ограничивающее сопротивление).

Очистка воды[править | править вики-текст]

Ультрафиолетовые излучатели применяются в процессе подготовки питьевой воды для очистки воды от органических примесей и бактерий, но это не имеет прямого отношения к ионизации.

Очистка воды в бассейне[править | править вики-текст]

Американская компания «Clear Wagner Enviro Technologies» разработала систему минеральной обработки, позволяющую значительно снизить применение химических реагентов при дезинфекции воды в бассейне. В основе минеральной обработки лежит принцип насыщения проточной воды ионами меди и серебра, оказывающими воздействие на водоросли, вирусы и болезнетворные бактерии.

Система очистки состоит из микропроцессорного блока управления и набора электродов, изготовленных из сплава меди и серебра и расположенных на небольшом расстоянии друг от друга.

Вода проходит через специальную проточную камеру с расположенными в ней электродами. Блок управления генерирует на электродах низковольтное постоянное напряжение. Электрический ток заставляет атомы на поверхности электродов отдавать свои электроны и превращает их в положительно заряженные ионы. Ионы, увлекаемые потоком воды, попадают в бассейн, где и происходит очистка. Микропроцессор контролирует количество ионов, поступающих в воду в зависимости от выбранного уровня ионизации. Периодическая смена полярности напряжения обеспечивает равномерный износ электродов.

Ионы меди и серебра, попавшие в воду, химически активны и потому разрушают находящиеся там живые микроорганизмы. Медь уничтожает водоросли, а серебро — вирусы и бактерии, обеспечивая длительную, нетоксичную очистку и препятствуя повторному заражению. Ионы остаются в воде до тех пор пока не выпадут в осадок или не вступят в нерастворимые соединения с водорослями и бактериями, которые затем осядут на фильтрах. Ионизатор, непрерывно инжектирующий ионы, восполнит их потери.

Массообменные процессы[править | править вики-текст]

Ионизация может ускорять или, наоборот, замедлять массообменные процессы. Так, если контактирующие вещества заряжены разноименно — процесс ускоряется, в то время, как при одноименном заряде — тормозится. Этот эффект нашел широкое применение, например в электрофотографии, очистке продуктов сгорания от частиц сажи, для интенсификации процесса копчения и т. п.


См. также[править | править вики-текст]

Примечания[править | править вики-текст]

  1. Rudi Riedl, Dieter Neumann, Jürgen Teubner: Technologie des Offsetdrucks. Seite 283. 1.Auflage. VEB Fachbuchverlag Leipzig. Leipzig 1989, ISBN 3-343-00527-4
  2. Фен с ионизатором (рус.)(недоступная ссылка — история). ezzz.ru. — Фен с ионизатором призван подарить волосам женщины блеск, мягкость, послушность и здоровый вид. Проверено 15 августа 2012.
  3. Пылесосы SAMSUNG EcoDrive: аллергики, налетай! (рус.). idh.ru. — В пылесос встроен ионизатор воздуха. Проверено 15 августа 2012. Архивировано из первоисточника 18 августа 2012.
  4. Что стоит знать о такой технике, как увлажнитель воздуха с ионизатором: цена, виды и качество? (рус.). Maxwell-products.ru (25 мая 2012). — Некоторые увлажнители воздуха снабжаются специальными ионизаторами, которые насыщают воздух отрицательно заряженными ионами. Проверено 15 августа 2012. Архивировано из первоисточника 18 августа 2012.
  5. Архивная продукция! Проводная мультимедийная Anti-RSI клавиатура A4Tech KAS-15 (рус.). A4Tech. — Слим-клавиатура A4Tech KA(S)-15 с ионизатором воздуха (маленькое отверстие в центре клавиатуры) позволяет обогатить воздух специальными анионами. Проверено 15 августа 2012. Архивировано из первоисточника 18 августа 2012.
  6. CeBIT 2008: ECOlution и другие инновации MSI (рус.). 3DNews Daily Digital Digest (13 марта 2008). — Модель ноутбука MSI PR620 (MSI Anion) имеет уникальный встроенный ионизатор воздуха вкупе с системой пылепоглощения. Проверено 15 августа 2012.