Нормальная форма игры

Материал из Википедии — свободной энциклопедии
Перейти к: навигация, поиск

В теории игр, игра в нормальной форме (или стратегической форме) состоит из трех элементов: множества игроков, множества чистых стратегий каждого игрока, множества платежных функций каждого игрока. Таким образом, игру в нормальной форме можно представить в виде n-мерной матрицы (таблицы), элементы которой это n-мерные платежные вектора.

Два игрока/две стратегии[править | править исходный текст]

Игрок 2
L
Игрок 2
R
Игрок 1
U
4, 3 –1, –1
Игрок 1
D
0, 0 3, 4
Нормальная форма для игры с 2 игроками, у каждого из которых по 2 стратегии.

Случай двух игроков — двух чистых стратегий отображен на таблице. Чистые стратегии первого игрока: U и D. Чистые стратегии второго игрока: L и R. Если первый игрок выбирает U, а второй игрок (единовременно) выбирает L, то соответствующие платежи равны 4 и 3 (первый элемент вектора (4, 3) обозначает платеж первого игрока, а второй — платеж второго игрока в случае, если были выбраны стратегии U и L). То есть чтобы найти распределение платежей, соответствующих каждому набору сыгранных стратегий, необходимо просто найти вектор, находящийся на пересечении соответствующих рядов и колонок таблицы (ряды соответствуют стратегиям первого игрока, а колонки — стратегиям второго игрока). Сыгранная комбинация стратегий называется исходом игры. В данном примере исход игры (U, L). Все возможные исходы для этой игры: {(U, L), (U, R), (D, L), (D, R)}. Очевидно, каждая ячейка таблицы соответствует одному из возможных исходов.

Функция полезности[править | править исходный текст]

В общем случае предполагается, что игрок имеет предпочтения на множестве исходов. То есть для каждого игрока заданы бинарные отношения между элементами этого множества. Это значит, что игрок может сравнить любые два исхода: игрок или отдает предпочтение одному из двух исходов или остаться безразличным между обоими исходами. При определенных дополнительных предположениях относительно предпочтений игрока можно показать, что существует функция полезности Неймана-Монгенштерна представляющая полезность каждого исхода как действительное число u(s), при чем если u(s)≥u(s’) <=> игрок предпочитает (или безразличен) исход s исходу s’. В нашем примере первый игрок предпочитает исход (U, L) исходу (D, R) так как 4>3.

Игры с полной/неполной информацией[править | править исходный текст]

В играх с полной информацией описание игры известно всем игрокам (все игроки знают чистые стратегии и функции полезности всех остальных игроков). В играх с неполной информацией некоторые игроки могут не знать функции полезности других игроков (то есть не знать некоторые конкретные значения для ячеек таблицы из нашего примера).

Любая игра в экстенсивной форме может быть представлена игрой в нормальной форме (не обязательно эквивалентной). Представление игры в нормальной форме может быть использовано для нахождения доминируемых стратегий.

Формальное представление[править | править исходный текст]

\mathbf{P}= \{1,2, \ldots , m\} — множество игроков

У каждого игрока i \in P имеется конечный набор чистых стратегий S_i

 S_i = \{1, 2, \ldots, n_i\}.

Исход игры — это комбинация чистых стратегий каждого игрока:

 \vec{s} = (s_1, s_2, \ldots,s_m)

где

 s_1 \in S_1, s_2 \in S_2, \ldots, s_m \in S_m

Функция полезности i-го игрока (функция платежа):

 F_i: S_1 \times S_2 \times \ldots \times S_m \rightarrow \mathbb{R}.

Def.: В нормальной форме игра представляется как множество:

 G=<\mathbf{P}, \mathbf{S}, \mathbf{F}>

где:

\mathbf{S}=  \{S_1, S_2, \ldots, S_m\}  — множество множеств чистых стратегий каждого игрока,
 \mathbf{F} = \{F_1, F_2, \ldots, F_m\}  — множество функций платежей для каждого игрока

Литература[править | править исходный текст]

  • Петросян Л. А., Зенкевич Н.А., Семина Е.А. Теория игр: Учебное пособие для университетов. — М.: Высш. шк., Книжный дом «Университет», 1998. — С. 304. — ISBN 5-06-001005-8, 5-8013-0007-4