Фотоэлемент

Материал из Википедии — свободной энциклопедии
Перейти к: навигация, поиск
Сурьмяно-цезиевый фотоэлемент, использующий явление внешнего фотоэффекта

Фотоэлементэлектронный прибор, который преобразует энергию фотонов в электрическую энергию. Первый фотоэлемент, основанный на внешнем фотоэффекте, создал Александр Столетов в конце XIX века.

Полупроводниковые фотоэлектрические преобразователи энергии[править | править вики-текст]

Фотоэлемент на основе мультикристаллического кремния

Наиболее эффективными, с энергетической точки зрения, устройствами для превращения солнечной энергии в электрическую являются полупроводниковые фотоэлектрические преобразователи (ФЭП)[источник не указан 1453 дня], поскольку это прямой, одноступенчатый переход энергии. КПД производимых в промышленных масштабах фотоэлементов в среднем составляет 16%, у лучших образцов до 25%[1]. В лабораторных условиях уже достигнуты КПД 43,5 %[2], 44,4 %[3], 44,7 %[4].

Физический принцип работы фотоэлемента[править | править вики-текст]

Преобразование энергии в ФЭП основано на фотоэлектрическом эффекте, который возникает в неоднородных полупроводниковых структурах при воздействии на них солнечного излучения.

Неоднородность структуры ФЭП может быть получена легированием одного и того же полупроводника различными примесями (создание p-n переходов) или путём соединения различных полупроводников с неодинаковой шириной запрещённой зоны — энергии отрыва электрона из атома (создание гетеропереходов), или же за счёт изменения химического состава полупроводника, приводящего к появлению градиента ширины запрещённой зоны (создание варизонных структур). Возможны также различные комбинации перечисленных способов.

Эффективность преобразования зависит от электрофизических характеристик неоднородной полупроводниковой структуры, а также оптических свойств ФЭП , среди которых наиболее важную роль играет фотопроводимость. Она обусловлена явлениями внутреннего фотоэффекта в полупроводниках при облучении их солнечным светом.

Основные необратимые потери энергии в ФЭП связаны с:

  • отражением солнечного излучения от поверхности преобразователя,
  • прохождением части излучения через ФЭП без поглощения в нём,
  • рассеянием на тепловых колебаниях решётки избыточной энергии фотонов,
  • рекомбинацией образовавшихся фото-пар на поверхностях и в объёме ФЭП,
  • внутренним сопротивлением преобразователя,
  • и некоторыми другими физическими процессами.

Для уменьшения всех видов потерь энергии в ФЭП разрабатываются и успешно применяется различные мероприятия. К их числу относятся:

  • использование полупроводников с оптимальной для солнечного излучения шириной запрещённой зоны;
  • направленное улучшение свойств полупроводниковой структуры путём её оптимального легирования и создания встроенных электрических полей;
  • переход от гомогенных к гетерогенным и варизонным полупроводниковым структурам;
  • оптимизация конструктивных параметров ФЭП (глубины залегания p-n перехода, толщины базового слоя, частоты контактной сетки и др.);
  • применение многофункциональных оптических покрытий, обеспечивающих просветление, терморегулирование и защиту ФЭП от космической радиации;
  • разработка ФЭП, прозрачных в длинноволновой области солнечного спектра за краем основной полосы поглощения;
  • создание каскадных ФЭП из специально подобранных по ширине запрещённой зоны полупроводников, позволяющих преобразовывать в каждом каскаде излучение, прошедшее через предыдущий каскад, и пр.;

Также существенного повышения КПД ФЭП удалось добиться за счёт создания преобразователей с двухсторонней чувствительностью (до +80 % к уже имеющемуся КПД одной стороны), применения люминесцентно-переизлучающих структур, линз Френеля, предварительного разложения солнечного спектра на две или более спектральные области с помощью многослойных плёночных светоделителей (дихроичных зеркал) с последующим преобразованием каждого участка спектра отдельным ФЭП и т. д.

Фотоэлементы промышленного назначения[править | править вики-текст]

На солнечных электростанциях (СЭС) можно использовать разные типы ФЭП, однако не все они удовлетворяют комплексу требований к этим системам:

  • высокая надёжность при длительном (до 25—30 лет) ресурсе работы;
  • высокая доступность сырья и возможность организации массового производства;
  • приемлемые с точки зрения сроков окупаемости затрат на создание системы преобразования;
  • минимальные расходы энергии и массы, связанные с управлением системой преобразования и передачи энергии (космос), включая ориентацию и стабилизацию станции в целом;
  • удобство техобслуживания.

Некоторые перспективные материалы трудно получить в необходимых для создания СЭС количествах из-за ограниченности природных запасов исходного сырья или сложности его переработки. Отдельные методы улучшения энергетических и эксплуатационных характеристик ФЭП, например за счёт создания сложных структур, плохо совместимы с возможностями организации их массового производства при низкой стоимости и т. д.[источник не указан 1453 дня]

Высокая производительность может быть достигнута лишь при организации полностью автоматизированного производства ФЭП, например на основе ленточной технологии, и создании развитой сети специализированных предприятий соответствующего профиля, то есть фактически целой отрасли промышленности, соизмеримой по масштабам с современной радиоэлектронной промышленностью[источник не указан 1453 дня]. Изготовление фотоэлементов и сборка солнечных батарей на автоматизированных линиях обеспечит многократное снижение себестоимости батареи.

Наиболее вероятными материалами для фотоэлементов СЭС считаются кремний, Cu(In,Ga)Se2 и арсенид галлия (GaAs), причём в последнем случае речь идёт о гетерофотопреобразователях (ГФП) со структурой AlGaAs-GaAs.[источник не указан 1453 дня]

См. также[править | править вики-текст]

Примечания[править | править вики-текст]

Литература[править | править вики-текст]

Ссылки[править | править вики-текст]