Дополнительный код (представление числа)

Материал из Википедии — свободной энциклопедии
Перейти к: навигация, поиск

Дополнительный код (англ. two’s complement, иногда twos-complement) — наиболее распространённый способ представления отрицательных целых чисел в компьютерах. Он позволяет заменить операцию вычитания на операцию сложения и сделать операции сложения и вычитания одинаковыми для знаковых и беззнаковых чисел, чем упрощает архитектуру ЭВМ.

Дополнительный код отрицательного числа можно получить инвертированием модуля двоичного числа (первое дополнение) и прибавлением к инверсии единицы (второе дополнение), либо вычитанием числа из нуля.

Дополнительный код (дополнение до 2) двоичного числа получается добавлением 1 к младшему значащему разряду его дополнения до 1. [1]

Дополнение до 2 двоичного числа определяется как величина, полученная вычитанием числа из наибольшей степени двух (из 2N для N-битного дополнения до 2).

Представление отрицательного числа в дополнительном коде[править | править исходный текст]

При записи числа в дополнительном коде старший разряд является знаковым. Если его значение равно 0, то в остальных разрядах записано положительное двоичное число, совпадающее с прямым кодом. Если число, записанное в прямом коде, отрицательное, то все разряды числа инвертируются, а к результату прибавляется 1. К получившемуся числу дописывается старший (знаковый) разряд, равный 1.

Двоичное 8-ми разрядное число со знаком в дополнительном коде может представлять любое целое в диапазоне от −128 до +127. Если старший разряд равен нулю, то наибольшее целое число, которое может быть записано в оставшихся 7 разрядах равно 2^7-1, что равно 127.

Примеры:

Десятичное
представление
Код двоичного представления (8 бит)
прямой обратный дополнительный
127        01111111        01111111        01111111       
1        00000001        00000001        00000001       
0        00000000        00000000        00000000       
-0        10000000        11111111        ---       
-1        10000001        11111110        11111111       
-2        10000010        11111101        11111110       
-3        10000011        11111100        11111101       
-4        10000100        11111011        11111100       
-5        10000101        11111010        11111011       
-6        10000110        11111001        11111010       
-7        10000111        11111000        11111001       
-8        10001000        11110111        11111000       
-9        10001001        11110110        11110111       
-10        10001010        11110101        11110110       
-11        10001011        11110100        11110101       
-127        11111111        10000000        10000001       
-128        ---        ---        10000000       

Дополнительный код для десятичных чисел[править | править исходный текст]

Тот же принцип можно использовать и в компьютерном представлении десятичных чисел: для каждого разряда цифра X заменяется на 9−X, и к получившемуся числу добавляется 1. Например, при использовании четырёхзначных чисел −0081 заменяется на 9919 (9919+0081=0000, пятый разряд выбрасывается).

При применении той же идеи к привычной 10-ричной системе счисления получится (например, для гипотетического процессора использующего 10-ричную систему счисления):

10-ричная система счисления
("обычная" запись)
10-ричная система счисления,
дополнительный код
... ...
13 0013
12 0012
11 0011
10 0010
9 0009
8 0008
... ...
2 0002
1 0001
0 0000
-1 9999
-2 9998
-3 9997
-4 9996
... ...
-9 9991
-10 9990
-11 9989
-12 9988
... ...

Преобразование в дополнительный код[править | править исходный текст]

Преобразование числа из прямого кода в дополнительный осуществляется по следующему алгоритму.

  1. Если число, записанное в прямом коде, положительное, то к нему дописывается старший (знаковый) разряд, равный 0, и на этом преобразование заканчивается;
  2. Если число, записанное в прямом коде, отрицательное, то все разряды числа инвертируются, а к результату прибавляется 1. К получившемуся числу дописывается старший (знаковый) разряд, равный 1.

Пример. Преобразуем отрицательное число −5, записанное в прямом коде, в дополнительный. Прямой код числа −5, взятого по модулю:

101 

Инвертируем все разряды числа, получая таким образом обратный код:

010

Добавим к результату 1

011

Допишем слева знаковый единичный разряд

1011

Для обратного преобразования используется тот же алгоритм. А именно:

1011

Инвертируем все разряды числа, получая таким образом обратный код:

0100

Добавим к результату 1

0101

И проверим, сложив с дополнительным кодом

 0101 + 1011 = 10000, пятый разряд выбрасывается.

p-адические числа[править | править исходный текст]

В системе p-адических чисел изменение знака числа осуществляется преобразованием числа в его дополнительный код. Например, если используется 5-ричная система счисления, то число, противоположное 1000... (1) равно 4444.... (−1).

Реализация алгоритма преобразования в обратный код (для 8-битных чисел)[править | править исходный текст]

Pascal[править | править исходный текст]

if a<0
  then a:=((not a) or 128) + 1;

C/C++[править | править исходный текст]

if (a < 0)
  a = ( (~(-a))|128 ) + 1;

Преимущества и недостатки[править | править исходный текст]

Преимущества[править | править исходный текст]

  • Один и тот же регистр может хранить как n-битовое положительное число, так и (n−1)-битовое число со знаком, с общими для обоих форматов операциями сложения, вычитания и левого сдвига.
  • Более удобная упаковка чисел в битовые поля.
  • Отсутствие числа «минус ноль».

Недостатки[править | править исходный текст]

  • Дополнительный код неочевиден для новичков.
  • В сложных форматах (таких, как плавающая запятая или двоично-десятичный код) большинство преимуществ аннулируются.
  • Модуль наибольшего числа не равен модулю наименьшего числа. Пример: знаковое целое 8-битовое. Максимальное число: 12710 == 7F16 == 011111112. Минимальное число: -12810 == 8016,дополнительный код == 100000002,дополнительный код. Соответственно, не для любого числа существует противоположное. Операция изменения знака может потребовать дополнительной проверки.
  • Сравнение. В отличие от сложения, числа в дополнительном коде нельзя сравнивать, как беззнаковые, или вычитать без расширения разрядности. Один из методов состоит в сравнении как беззнаковых исходных чисел с инвертированным знаковым битом.

Пример программного преобразования[править | править исходный текст]

Если происходит чтение данных из файла или области памяти, где они хранятся в двоичном дополнительном коде (например, файл WAVE), может оказаться необходимым преобразовать байты. Если данные хранятся в 8 битах, необходимо, чтобы значения 128-255 были отрицательными.

C# .NET / C style[править | править исходный текст]

byte b1 = 254; //11111110 (бинарное)
byte b2 = 121; //01111001 (бинарное)
byte c = 1<<(sizeof(byte)*8-1);  //2 возводится в степень 7. Результат: 10000000 (бинарное)
byte b1Conversion=(c ^ b1) - c;  //Результат: -2. А фактически, двоичный дополнительный код.
byte b2Conversion=(c ^ b2) - c;  //Результат остаётся 121, потому что знаковый разряд - ноль.

См. также[править | править исходный текст]

Литература[править | править исходный текст]

  • Behrooz Parhami 2.3. Complement Representation, 2.4. Two's- and 1's-complement numbers // Computer Arithmetic: Algorithms and Hardware Designs. — New York: Oxford University Press, 2000. — P. 22-27. — 510 p. — ISBN 0-19-512583-5
  • Самофалов К.Г., Романкевич А.М., Валуйский В.Н., Каневский Ю.С., Пиневич М.М. Прикладная теория цифровых автоматов. — К.: Вища школа, 1987. — 375 с.

Ссылки[править | править исходный текст]

  1. К.Г.Жуков "Справочное руководство пользователя Fixed-Point Blockset" 1.2. Понятие прямого, обратного и дополнительного кодов, Определение 3. Архивировано из первоисточника 23 июня 2012.