Журнал фильтра правок

Фильтры правок (обсуждение) — это автоматизированный механизм проверок правок участников.
(Список | Последние изменения фильтров | Изучение правок | Журнал срабатываний)
Перейти к навигации Перейти к поиску
Подробности записи журнала 2 566 377

18:15, 13 мая 2018: 99 «Кусок текста» 78.36.182.215 (обсуждение) на странице Инверторный кондиционер, меры: нет (просмотреть | изм.)

Изменения, сделанные в правке

Работа кондиционера в непрерывном режиме на максимальной мощности указывает лишь на то, что его выбранная мощность не соответствует охлаждаемому помещению. В среднем, теплопритоки в помещение и температура уличного воздуха значительно ниже предельных. Обычный кондиционер работает в цикличном режиме, а инверторный — в режиме сниженной мощности компрессора.
Работа кондиционера в непрерывном режиме на максимальной мощности указывает лишь на то, что его выбранная мощность не соответствует охлаждаемому помещению. В среднем, теплопритоки в помещение и температура уличного воздуха значительно ниже предельных. Обычный кондиционер работает в цикличном режиме, а инверторный — в режиме сниженной мощности компрессора.


Инверторный кондиционер при снижении оборотов компрессора оказывается более эффективным, так как на той же площади испарителя и конденсатора передается значительно меньше тепловой энергии, что в свою очередь уменьшает значения [[Температурный напор|температурного напора]] и повышает эффективность. Подобный режим позволяет работать кондиционеру в более широком диапазоне температур.
Инверторный кондиционер при снижении оборотов компрессора оказывается более эффективным, так как на той же площади испарителя и конденсатора передаётся значительно меньше тепловой энергии, что в свою очередь уменьшает значения [[Температурный напор|температурного напора]] и повышает эффективность. Подобный режим позволяет работать кондиционеру в более широком диапазоне температур.


Обычный ('''не''' инверторный) кондиционер при работе в циклическом режиме имеет переходные процессы, как термодинамические, так и элетромеханические. При включении компрессора потребляются большие стартовые токи, необходимые для разгона ротора двигателя. После старта и до получения необходимых режимов компрессор должен перекачать до 50 % всего объёма фреона из зоны низкого давления в зону высокого давления. В это время кондиционер не вырабатывает холод. В результате достигнутые расчетные режимы являются максимальными и все части испытывают максимальную (не оптимальную) нагрузку: максимальные температурные напоры на конденсаторе и испарителе, максимальные скорости вращения вентиляторов, максимальные потери на прохождение фреона по магистралям, максимальная температура компрессора и компрессорного отсека. При достижении необходимой температуры компрессор отключается и давление в двух зонах — высокого и низкого давления — выравниваются через дросселирующее устройство. Так как давления отличаются от расчетных, кипение фреона может происходить в любой части системы — в магистрали, капиллярной трубке, ресивере. Выработанный потенциальный холод используется не по назначению, охлаждая уличный воздух, компрессорный отсек и так далее. Есть мнение, что при выравнивании давлений через дросселирующее устройство охлаждается внутренний, а не внешний блок (естественно, при работе кондиционера в режиме охлаждения). Поэтому, пока происходит выравнивание давлений после выключения компрессора, неинверторный кондиционер все же продолжает охлаждать воздух в помещении, чем в какой-то мере компенсирует потери переходных процессов при повторном включении компрессора.
Обычный ('''не''' инверторный) кондиционер при работе в циклическом режиме имеет переходные процессы, как термодинамические, так и элетромеханические. При включении компрессора потребляются большие стартовые токи, необходимые для разгона ротора двигателя. После старта и до получения необходимых режимов компрессор должен перекачать до 50 % всего объёма фреона из зоны низкого давления в зону высокого давления. В это время кондиционер не вырабатывает холод. В результате достигнутые расчётные режимы являются максимальными и все части испытывают максимальную (не оптимальную) нагрузку: максимальные температурные напоры на конденсаторе и испарителе, максимальные скорости вращения вентиляторов, максимальные потери на прохождение фреона по магистралям, максимальная температура компрессора и компрессорного отсека. При достижении необходимой температуры компрессор отключается и давление в двух зонах — высокого и низкого давления — выравниваются через дросселирующее устройство. Так как давления отличаются от расчётных, кипение фреона может происходить в любой части системы — в магистрали, капиллярной трубке, ресивере. Выработанный потенциальный холод используется не по назначению, охлаждая уличный воздух, компрессорный отсек и так далее. Есть мнение, что при выравнивании давлений через дросселирующее устройство охлаждается внутренний, а не внешний блок (естественно, при работе кондиционера в режиме охлаждения). Поэтому, пока происходит выравнивание давлений после выключения компрессора, неинверторный кондиционер всё же продолжает охлаждать воздух в помещении, чем в какой-то мере компенсирует потери переходных процессов при повторном включении компрессора.


Сторонники инверторной технологии утверждают, что из-за отсутствия переходных процессов инверторный кондиционер экономит до 30 % электроэнергии.
Сторонники инверторной технологии утверждают, что из-за отсутствия переходных процессов инверторный кондиционер экономит до 30 % электроэнергии.

Параметры действия

ПеременнаяЗначение
Была ли правка отмечена как «малое изменение» (больше не используется) (minor_edit)
false
Число правок участника (user_editcount)
null
Имя учётной записи (user_name)
'78.36.182.215'
Возраст учётной записи (user_age)
0
Группы (включая неявные) в которых состоит участник (user_groups)
[ 0 => '*' ]
Редактирует ли участник через мобильный интерфейс (user_mobile)
false
user_wpzero
false
ID страницы (page_id)
1107716
Пространство имён страницы (page_namespace)
0
Название страницы (без пространства имён) (page_title)
'Инверторный кондиционер'
Полное название страницы (page_prefixedtitle)
'Инверторный кондиционер'
Последние десять редакторов страницы (page_recent_contributors)
[ 0 => 'Fotisgrek', 1 => 'Кронас', 2 => '83.221.186.127', 3 => 'Whitefresh', 4 => 'A5b', 5 => '93.175.232.215', 6 => 'Illustrator', 7 => '109.185.167.86', 8 => '217.12.210.72', 9 => '91.202.129.166' ]
Действие (action)
'edit'
Описание правки/причина (summary)
''
Старая модель содержимого (old_content_model)
'wikitext'
Новая модель содержимого (new_content_model)
'wikitext'
Вики-текст старой страницы до правки (old_wikitext)
'{{Значимость|2015-06-18}}[[Файл:Air cond ext block.jpg|thumb|Наружный блок]] [[Файл:Air Conditioner.jpg|thumb|Настенный внутренний блок]] '''Инверторный кондиционер''' — торговое название [[кондиционер]]ов воздуха, у которых имеется возможность изменения частоты вращения двигателя [[компрессор]]а (инвертор — от лат. ''inverto'' — переворачиваю, обращаю, изменяю). Блок управления в таких кондиционерах преобразует переменный ток питания в постоянный и затем преобразует в переменный ток необходимой частоты. Этот процесс называется [[Инвертор (электротехника)|инвертированием]]. Такое преобразование позволяет в широких пределах регулировать скорость вращения двигателя компрессора, в том числе выше 3000 об/мин., и, следовательно, холодо- или теплопроизводительность кондиционера. Благодаря такой технологии инверторные кондиционеры более экономичны и обеспечивают более гибкое и точное поддержание температуры, чем кондиционеры с обычным компрессором. Кроме того, они позволяют работать в более широком диапазоне наружных температур. Первый инверторный кондиционер появился в 1981 году в [[Япония|Японии]]. Сегодня инверторная технология используется практически у всех производителей климатического оборудования наравне с обычными кондиционерами. == Принцип работы == {{Main|Парокомпрессионный холодильный цикл}} Принцип работы инверторного кондиционера состоит в том, что имеется возможность плавной (многоступенчатой) регулировки скорости вращения [[мотор]]а компрессора в зависимости от тепловой нагрузки в помещении. Для более быстрого достижения заданной [[температура|температуры]] контроллер инвертора увеличивает скорость вращения двигателя компрессора. Кондиционер начинает работать в форсированном режиме до тех пор, пока температура в помещении не достигнет заданного значения. Тогда скорость вращения двигателя снижается, но компрессор продолжает работать, поддерживая постоянную температуру с минимальными отклонениями. Таким образом, в процессе работы инверторного кондиционера нет постоянного включения/выключения компрессора. Это позволяет уменьшить энергопотребление (незначительно), снизить уровень шума, более точно поддерживать установленную температуру (температурные колебания не превышают 1,0 °C), работать в более широком диапазоне наружных температур, а также продлить срок службы компрессора из-за меньшего количества пусков (запуск компрессора сопровождается повышенным износом из-за того, что масло в компрессоре стекает в [[Картер (техника)|картер]] и первые секунды он работает без смазки). == Экономия энергии инверторным кондиционером == Инверторный кондиционер имеет [[Частотно-регулируемый привод|блок силовой электроники]], который выполняет два преобразования: * Из сетевого переменного напряжения получает постоянный ток. * Из постоянного напряжения формирует переменный ток необходимой частоты, определяющий скорость вращения двигателя компрессора. Как любой преобразователь, [[Частотно-регулируемый привод|силовой инверторный блок]] имеет КПД меньше 100 %. При равных условиях, в режиме ''непрерывной'' работы компрессора на максимальной мощности обычный кондиционер окажется более эффективным чем инверторный на величину потерь инвертора (10-15 %). Работа кондиционера в непрерывном режиме на максимальной мощности указывает лишь на то, что его выбранная мощность не соответствует охлаждаемому помещению. В среднем, теплопритоки в помещение и температура уличного воздуха значительно ниже предельных. Обычный кондиционер работает в цикличном режиме, а инверторный — в режиме сниженной мощности компрессора. Инверторный кондиционер при снижении оборотов компрессора оказывается более эффективным, так как на той же площади испарителя и конденсатора передается значительно меньше тепловой энергии, что в свою очередь уменьшает значения [[Температурный напор|температурного напора]] и повышает эффективность. Подобный режим позволяет работать кондиционеру в более широком диапазоне температур. Обычный ('''не''' инверторный) кондиционер при работе в циклическом режиме имеет переходные процессы, как термодинамические, так и элетромеханические. При включении компрессора потребляются большие стартовые токи, необходимые для разгона ротора двигателя. После старта и до получения необходимых режимов компрессор должен перекачать до 50 % всего объёма фреона из зоны низкого давления в зону высокого давления. В это время кондиционер не вырабатывает холод. В результате достигнутые расчетные режимы являются максимальными и все части испытывают максимальную (не оптимальную) нагрузку: максимальные температурные напоры на конденсаторе и испарителе, максимальные скорости вращения вентиляторов, максимальные потери на прохождение фреона по магистралям, максимальная температура компрессора и компрессорного отсека. При достижении необходимой температуры компрессор отключается и давление в двух зонах — высокого и низкого давления — выравниваются через дросселирующее устройство. Так как давления отличаются от расчетных, кипение фреона может происходить в любой части системы — в магистрали, капиллярной трубке, ресивере. Выработанный потенциальный холод используется не по назначению, охлаждая уличный воздух, компрессорный отсек и так далее. Есть мнение, что при выравнивании давлений через дросселирующее устройство охлаждается внутренний, а не внешний блок (естественно, при работе кондиционера в режиме охлаждения). Поэтому, пока происходит выравнивание давлений после выключения компрессора, неинверторный кондиционер все же продолжает охлаждать воздух в помещении, чем в какой-то мере компенсирует потери переходных процессов при повторном включении компрессора. Сторонники инверторной технологии утверждают, что из-за отсутствия переходных процессов инверторный кондиционер экономит до 30 % электроэнергии. == Преимущества == * Уменьшение износа; * выход на заданный температурный режим в 2 раза быстрее (±10°С за 15 минут против 30 минут у неинверторных моделей); * возможность более точного поддержания заданной температуры за счёт плавного управления скоростью вращения двигателя компрессора; * работа двигателей [[вентилятор]]ов на очень малых оборотах при малых оборотах компрессора снижает уровень шумов как внутреннего блока (от 20 до 26 дБ), так и наружного; * при правильном выборе мощности кондиционера возможна экономия электроэнергии от 30 % до 66 % (у некоторых моделей), по сравнению с «обычными» кондиционерами; {{нет АИ|24|05|2015}} * отсутствие больших пусковых токов при включении компрессора снижает нагрузку на электрическую сеть; * меньший уровень шума, чем у «обычных» кондиционеров (20-30 Дб против 24-35 Дб); * высокий [[коэффициент мощности]] и отсутствие [[Реактивная мощность|реактивных составляющих потребляемого тока]] при работе компрессора снижает нагрев проводов силовой сети; {{нет АИ|24|05|2015}} * Более продолжительный средний срок службы: 8-12 лет против 6-9 лет у обычного кондиционера. == Недостатки == * высокая цена инверторных кондиционеров по сравнению с неинверторными аналогами; * повышенная чувствительность к скачкам напряжения из-за более сложной электронной начинки; * повышенное энергопотребление в режиме непрерывной эксплуатации (потери на инверторе) * электроника большинства инверторных кондиционеров не включит компрессор, если температура уличного воздуха выше допустимой (обычно от −10 °С до +42 °С), в это время обычные сплит-системы будут работать; * неунифицированность запасных частей, что часто вызывает длительный ремонт, связанный с ожиданием необходимой детали от официального поставщика (в России — часто до трёх месяцев и более). У кондиционеров же неинверторного типа многие части (компрессор, пускозащитное реле, датчики температуры) унифицированы и в случае поломки легко заменяются на аналогичный узел другого производителя. == Примечания == {{примечания}} == Ссылки == * {{cite web | url = http://whirlpool.net.au/wiki/?tag=aircon_faq | title = FAQ по инверторным кондиционерам | lang = en | description = }} {{Холодильная машина}} [[Категория:Кондиционирование]] [[Категория:Бытовая техника]]'
Вики-текст новой страницы после правки (new_wikitext)
'{{Значимость|2015-06-18}}[[Файл:Air cond ext block.jpg|thumb|Наружный блок]] [[Файл:Air Conditioner.jpg|thumb|Настенный внутренний блок]] '''Инверторный кондиционер''' — торговое название [[кондиционер]]ов воздуха, у которых имеется возможность изменения частоты вращения двигателя [[компрессор]]а (инвертор — от лат. ''inverto'' — переворачиваю, обращаю, изменяю). Блок управления в таких кондиционерах преобразует переменный ток питания в постоянный и затем преобразует в переменный ток необходимой частоты. Этот процесс называется [[Инвертор (электротехника)|инвертированием]]. Такое преобразование позволяет в широких пределах регулировать скорость вращения двигателя компрессора, в том числе выше 3000 об/мин., и, следовательно, холодо- или теплопроизводительность кондиционера. Благодаря такой технологии инверторные кондиционеры более экономичны и обеспечивают более гибкое и точное поддержание температуры, чем кондиционеры с обычным компрессором. Кроме того, они позволяют работать в более широком диапазоне наружных температур. Первый инверторный кондиционер появился в 1981 году в [[Япония|Японии]]. Сегодня инверторная технология используется практически у всех производителей климатического оборудования наравне с обычными кондиционерами. == Принцип работы == {{Main|Парокомпрессионный холодильный цикл}} Принцип работы инверторного кондиционера состоит в том, что имеется возможность плавной (многоступенчатой) регулировки скорости вращения [[мотор]]а компрессора в зависимости от тепловой нагрузки в помещении. Для более быстрого достижения заданной [[температура|температуры]] контроллер инвертора увеличивает скорость вращения двигателя компрессора. Кондиционер начинает работать в форсированном режиме до тех пор, пока температура в помещении не достигнет заданного значения. Тогда скорость вращения двигателя снижается, но компрессор продолжает работать, поддерживая постоянную температуру с минимальными отклонениями. Таким образом, в процессе работы инверторного кондиционера нет постоянного включения/выключения компрессора. Это позволяет уменьшить энергопотребление (незначительно), снизить уровень шума, более точно поддерживать установленную температуру (температурные колебания не превышают 1,0 °C), работать в более широком диапазоне наружных температур, а также продлить срок службы компрессора из-за меньшего количества пусков (запуск компрессора сопровождается повышенным износом из-за того, что масло в компрессоре стекает в [[Картер (техника)|картер]] и первые секунды он работает без смазки). == Экономия энергии инверторным кондиционером == Инверторный кондиционер имеет [[Частотно-регулируемый привод|блок силовой электроники]], который выполняет два преобразования: * Из сетевого переменного напряжения получает постоянный ток. * Из постоянного напряжения формирует переменный ток необходимой частоты, определяющий скорость вращения двигателя компрессора. Как любой преобразователь, [[Частотно-регулируемый привод|силовой инверторный блок]] имеет КПД меньше 100 %. При равных условиях, в режиме ''непрерывной'' работы компрессора на максимальной мощности обычный кондиционер окажется более эффективным чем инверторный на величину потерь инвертора (10-15 %). Работа кондиционера в непрерывном режиме на максимальной мощности указывает лишь на то, что его выбранная мощность не соответствует охлаждаемому помещению. В среднем, теплопритоки в помещение и температура уличного воздуха значительно ниже предельных. Обычный кондиционер работает в цикличном режиме, а инверторный — в режиме сниженной мощности компрессора. Инверторный кондиционер при снижении оборотов компрессора оказывается более эффективным, так как на той же площади испарителя и конденсатора передаётся значительно меньше тепловой энергии, что в свою очередь уменьшает значения [[Температурный напор|температурного напора]] и повышает эффективность. Подобный режим позволяет работать кондиционеру в более широком диапазоне температур. Обычный ('''не''' инверторный) кондиционер при работе в циклическом режиме имеет переходные процессы, как термодинамические, так и элетромеханические. При включении компрессора потребляются большие стартовые токи, необходимые для разгона ротора двигателя. После старта и до получения необходимых режимов компрессор должен перекачать до 50 % всего объёма фреона из зоны низкого давления в зону высокого давления. В это время кондиционер не вырабатывает холод. В результате достигнутые расчётные режимы являются максимальными и все части испытывают максимальную (не оптимальную) нагрузку: максимальные температурные напоры на конденсаторе и испарителе, максимальные скорости вращения вентиляторов, максимальные потери на прохождение фреона по магистралям, максимальная температура компрессора и компрессорного отсека. При достижении необходимой температуры компрессор отключается и давление в двух зонах — высокого и низкого давления — выравниваются через дросселирующее устройство. Так как давления отличаются от расчётных, кипение фреона может происходить в любой части системы — в магистрали, капиллярной трубке, ресивере. Выработанный потенциальный холод используется не по назначению, охлаждая уличный воздух, компрессорный отсек и так далее. Есть мнение, что при выравнивании давлений через дросселирующее устройство охлаждается внутренний, а не внешний блок (естественно, при работе кондиционера в режиме охлаждения). Поэтому, пока происходит выравнивание давлений после выключения компрессора, неинверторный кондиционер всё же продолжает охлаждать воздух в помещении, чем в какой-то мере компенсирует потери переходных процессов при повторном включении компрессора. Сторонники инверторной технологии утверждают, что из-за отсутствия переходных процессов инверторный кондиционер экономит до 30 % электроэнергии. == Преимущества == * Уменьшение износа; * выход на заданный температурный режим в 2 раза быстрее (±10°С за 15 минут против 30 минут у неинверторных моделей); * возможность более точного поддержания заданной температуры за счёт плавного управления скоростью вращения двигателя компрессора; * работа двигателей [[вентилятор]]ов на очень малых оборотах при малых оборотах компрессора снижает уровень шумов как внутреннего блока (от 20 до 26 дБ), так и наружного; * при правильном выборе мощности кондиционера возможна экономия электроэнергии от 30 % до 66 % (у некоторых моделей), по сравнению с «обычными» кондиционерами; {{нет АИ|24|05|2015}} * отсутствие больших пусковых токов при включении компрессора снижает нагрузку на электрическую сеть; * меньший уровень шума, чем у «обычных» кондиционеров (20-30 Дб против 24-35 Дб); * высокий [[коэффициент мощности]] и отсутствие [[Реактивная мощность|реактивных составляющих потребляемого тока]] при работе компрессора снижает нагрев проводов силовой сети; {{нет АИ|24|05|2015}} * Более продолжительный средний срок службы: 8-12 лет против 6-9 лет у обычного кондиционера. == Недостатки == * высокая цена инверторных кондиционеров по сравнению с неинверторными аналогами; * повышенная чувствительность к скачкам напряжения из-за более сложной электронной начинки; * повышенное энергопотребление в режиме непрерывной эксплуатации (потери на инверторе) * электроника большинства инверторных кондиционеров не включит компрессор, если температура уличного воздуха выше допустимой (обычно от −10 °С до +42 °С), в это время обычные сплит-системы будут работать; * неунифицированность запасных частей, что часто вызывает длительный ремонт, связанный с ожиданием необходимой детали от официального поставщика (в России — часто до трёх месяцев и более). У кондиционеров же неинверторного типа многие части (компрессор, пускозащитное реле, датчики температуры) унифицированы и в случае поломки легко заменяются на аналогичный узел другого производителя. == Примечания == {{примечания}} == Ссылки == * {{cite web | url = http://whirlpool.net.au/wiki/?tag=aircon_faq | title = FAQ по инверторным кондиционерам | lang = en | description = }} {{Холодильная машина}} [[Категория:Кондиционирование]] [[Категория:Бытовая техника]]'
Унифицированная разница изменений правки (edit_diff)
'@@ -19,7 +19,7 @@ Работа кондиционера в непрерывном режиме на максимальной мощности указывает лишь на то, что его выбранная мощность не соответствует охлаждаемому помещению. В среднем, теплопритоки в помещение и температура уличного воздуха значительно ниже предельных. Обычный кондиционер работает в цикличном режиме, а инверторный — в режиме сниженной мощности компрессора. -Инверторный кондиционер при снижении оборотов компрессора оказывается более эффективным, так как на той же площади испарителя и конденсатора передается значительно меньше тепловой энергии, что в свою очередь уменьшает значения [[Температурный напор|температурного напора]] и повышает эффективность. Подобный режим позволяет работать кондиционеру в более широком диапазоне температур. +Инверторный кондиционер при снижении оборотов компрессора оказывается более эффективным, так как на той же площади испарителя и конденсатора передаётся значительно меньше тепловой энергии, что в свою очередь уменьшает значения [[Температурный напор|температурного напора]] и повышает эффективность. Подобный режим позволяет работать кондиционеру в более широком диапазоне температур. -Обычный ('''не''' инверторный) кондиционер при работе в циклическом режиме имеет переходные процессы, как термодинамические, так и элетромеханические. При включении компрессора потребляются большие стартовые токи, необходимые для разгона ротора двигателя. После старта и до получения необходимых режимов компрессор должен перекачать до 50 % всего объёма фреона из зоны низкого давления в зону высокого давления. В это время кондиционер не вырабатывает холод. В результате достигнутые расчетные режимы являются максимальными и все части испытывают максимальную (не оптимальную) нагрузку: максимальные температурные напоры на конденсаторе и испарителе, максимальные скорости вращения вентиляторов, максимальные потери на прохождение фреона по магистралям, максимальная температура компрессора и компрессорного отсека. При достижении необходимой температуры компрессор отключается и давление в двух зонах — высокого и низкого давления — выравниваются через дросселирующее устройство. Так как давления отличаются от расчетных, кипение фреона может происходить в любой части системы — в магистрали, капиллярной трубке, ресивере. Выработанный потенциальный холод используется не по назначению, охлаждая уличный воздух, компрессорный отсек и так далее. Есть мнение, что при выравнивании давлений через дросселирующее устройство охлаждается внутренний, а не внешний блок (естественно, при работе кондиционера в режиме охлаждения). Поэтому, пока происходит выравнивание давлений после выключения компрессора, неинверторный кондиционер все же продолжает охлаждать воздух в помещении, чем в какой-то мере компенсирует потери переходных процессов при повторном включении компрессора. +Обычный ('''не''' инверторный) кондиционер при работе в циклическом режиме имеет переходные процессы, как термодинамические, так и элетромеханические. При включении компрессора потребляются большие стартовые токи, необходимые для разгона ротора двигателя. После старта и до получения необходимых режимов компрессор должен перекачать до 50 % всего объёма фреона из зоны низкого давления в зону высокого давления. В это время кондиционер не вырабатывает холод. В результате достигнутые расчётные режимы являются максимальными и все части испытывают максимальную (не оптимальную) нагрузку: максимальные температурные напоры на конденсаторе и испарителе, максимальные скорости вращения вентиляторов, максимальные потери на прохождение фреона по магистралям, максимальная температура компрессора и компрессорного отсека. При достижении необходимой температуры компрессор отключается и давление в двух зонах — высокого и низкого давления — выравниваются через дросселирующее устройство. Так как давления отличаются от расчётных, кипение фреона может происходить в любой части системы — в магистрали, капиллярной трубке, ресивере. Выработанный потенциальный холод используется не по назначению, охлаждая уличный воздух, компрессорный отсек и так далее. Есть мнение, что при выравнивании давлений через дросселирующее устройство охлаждается внутренний, а не внешний блок (естественно, при работе кондиционера в режиме охлаждения). Поэтому, пока происходит выравнивание давлений после выключения компрессора, неинверторный кондиционер всё же продолжает охлаждать воздух в помещении, чем в какой-то мере компенсирует потери переходных процессов при повторном включении компрессора. Сторонники инверторной технологии утверждают, что из-за отсутствия переходных процессов инверторный кондиционер экономит до 30 % электроэнергии. '
Новый размер страницы (new_size)
14525
Старый размер страницы (old_size)
14525
Изменение размера в правке (edit_delta)
0
Добавленные в правке строки (added_lines)
[ 0 => 'Инверторный кондиционер при снижении оборотов компрессора оказывается более эффективным, так как на той же площади испарителя и конденсатора передаётся значительно меньше тепловой энергии, что в свою очередь уменьшает значения [[Температурный напор|температурного напора]] и повышает эффективность. Подобный режим позволяет работать кондиционеру в более широком диапазоне температур.', 1 => 'Обычный ('''не''' инверторный) кондиционер при работе в циклическом режиме имеет переходные процессы, как термодинамические, так и элетромеханические. При включении компрессора потребляются большие стартовые токи, необходимые для разгона ротора двигателя. После старта и до получения необходимых режимов компрессор должен перекачать до 50 % всего объёма фреона из зоны низкого давления в зону высокого давления. В это время кондиционер не вырабатывает холод. В результате достигнутые расчётные режимы являются максимальными и все части испытывают максимальную (не оптимальную) нагрузку: максимальные температурные напоры на конденсаторе и испарителе, максимальные скорости вращения вентиляторов, максимальные потери на прохождение фреона по магистралям, максимальная температура компрессора и компрессорного отсека. При достижении необходимой температуры компрессор отключается и давление в двух зонах — высокого и низкого давления — выравниваются через дросселирующее устройство. Так как давления отличаются от расчётных, кипение фреона может происходить в любой части системы — в магистрали, капиллярной трубке, ресивере. Выработанный потенциальный холод используется не по назначению, охлаждая уличный воздух, компрессорный отсек и так далее. Есть мнение, что при выравнивании давлений через дросселирующее устройство охлаждается внутренний, а не внешний блок (естественно, при работе кондиционера в режиме охлаждения). Поэтому, пока происходит выравнивание давлений после выключения компрессора, неинверторный кондиционер всё же продолжает охлаждать воздух в помещении, чем в какой-то мере компенсирует потери переходных процессов при повторном включении компрессора.' ]
Удалённые в правке строки (removed_lines)
[ 0 => 'Инверторный кондиционер при снижении оборотов компрессора оказывается более эффективным, так как на той же площади испарителя и конденсатора передается значительно меньше тепловой энергии, что в свою очередь уменьшает значения [[Температурный напор|температурного напора]] и повышает эффективность. Подобный режим позволяет работать кондиционеру в более широком диапазоне температур.', 1 => 'Обычный ('''не''' инверторный) кондиционер при работе в циклическом режиме имеет переходные процессы, как термодинамические, так и элетромеханические. При включении компрессора потребляются большие стартовые токи, необходимые для разгона ротора двигателя. После старта и до получения необходимых режимов компрессор должен перекачать до 50 % всего объёма фреона из зоны низкого давления в зону высокого давления. В это время кондиционер не вырабатывает холод. В результате достигнутые расчетные режимы являются максимальными и все части испытывают максимальную (не оптимальную) нагрузку: максимальные температурные напоры на конденсаторе и испарителе, максимальные скорости вращения вентиляторов, максимальные потери на прохождение фреона по магистралям, максимальная температура компрессора и компрессорного отсека. При достижении необходимой температуры компрессор отключается и давление в двух зонах — высокого и низкого давления — выравниваются через дросселирующее устройство. Так как давления отличаются от расчетных, кипение фреона может происходить в любой части системы — в магистрали, капиллярной трубке, ресивере. Выработанный потенциальный холод используется не по назначению, охлаждая уличный воздух, компрессорный отсек и так далее. Есть мнение, что при выравнивании давлений через дросселирующее устройство охлаждается внутренний, а не внешний блок (естественно, при работе кондиционера в режиме охлаждения). Поэтому, пока происходит выравнивание давлений после выключения компрессора, неинверторный кондиционер все же продолжает охлаждать воздух в помещении, чем в какой-то мере компенсирует потери переходных процессов при повторном включении компрессора.' ]
Была ли правка сделана через выходной узел сети Tor (tor_exit_node)
0
Unix-время изменения (timestamp)
1526235322