Пептидная связь: различия между версиями

Материал из Википедии — свободной энциклопедии
Перейти к навигации Перейти к поиску
[непроверенная версия][непроверенная версия]
Содержимое удалено Содержимое добавлено
мНет описания правки
Нет описания правки
Метка: редактор вики-текста 2017
Строка 1: Строка 1:
[[Файл:Peptidformationball rus.svg|300px|thumb|Схема образования пептидной связи.]]
[[Файл:Peptidformationball rus.svg|300px|thumb|Схема образования пептидной связи.]]
[[Файл:Protein backbone PhiPsiOmega drawing.svg|мини|Основные двугранные углы φ и ψ (и ω). ]]
[[Файл:Protein backbone PhiPsiOmega drawing.svg|мини|Основные двугранные углы φ и ψ (и ω). Все три угла находятся под углом 180° в показанной конфигурации. ]]
'''Пептидная связь''' — вид амидной связи, возникающей при образовании [[белок|белков]] и [[пептиды|пептидов]] в результате взаимодействия α-аминогруппы (—NH<SUB>2</SUB>) одной [[аминокислота|аминокислоты]] с α-карбоксильной группой (—СООН) другой аминокислоты.
'''Пептидная связь''' — вид амидной связи, возникающей при образовании [[белок|белков]] и [[пептиды|пептидов]] в результате взаимодействия α-аминогруппы (—NH<SUB>2</SUB>) одной [[аминокислота|аминокислоты]] с α-карбоксильной группой (—СООН) другой аминокислоты.


Строка 6: Строка 6:


== Свойства пептидной связи ==
== Свойства пептидной связи ==
Как и в случае любых амидов, в пептидной связи за счет резонанса канонических структур связь C-N между углеродом карбонильной группы и атомом азота частично имеет характер двойной:
Как и в случае любых амидов, в пептидной связи за счет резонанса канонических структур связь C-N между углеродом карбонильной группы и атомом азота частично имеет характер двойной:
:[[Файл:Mesomeric peptide bond.svg|426x426px]]
: [[Файл:Mesomeric peptide bond.svg|426x426px]]
Это проявляется, в частности, в уменьшении её длины до 1,33 [[ангстрем]]а:
Это проявляется, в частности, в уменьшении её длины до 1,33 [[ангстрем]]а:
:[[Файл:Trans-Peptide Bond.png|400 px]]
: [[Файл:Trans-Peptide Bond.png|400 px]]


Это обусловливает следующие свойства:
Это обусловливает следующие свойства:
Строка 17: Строка 17:


== Конформация полипептидов ==
== Конформация полипептидов ==
Углы φ и ψ могут принимать различные значения, и число возможных пространственных конфигураций для полипептидной цепи может быть бесконечно большим. Однако в реальных условиях ряд конфигураций не реализуется из-за пространственных затруднений.
Углы φ и ψ могут принимать различные значения, и число возможных пространственных конфигураций для полипептидной цепи может быть бесконечно большим. Однако в реальных условиях ряд конфигураций не реализуется из-за пространственных затруднений.


В пределах стерически дозволенных углов φ и ψ наиболее вероятна такая конфигурация пептидной цепи, при которой потенциальная энергия системы минимальна. Выигрыш потенциальной энергии происходит в результате целого ряда взаимодействий между атомами и атомными группами внутри полипептидной цепи (нековалентные взаимодействия, дипольные взаимодействия, торсионный потенциал).
В пределах стерически дозволенных углов φ и ψ наиболее вероятна такая конфигурация пептидной цепи, при которой потенциальная энергия системы минимальна. Выигрыш потенциальной энергии происходит в результате целого ряда взаимодействий между атомами и атомными группами внутри полипептидной цепи (нековалентные взаимодействия, дипольные взаимодействия, торсионный потенциал).

Версия от 10:57, 13 августа 2021

Схема образования пептидной связи.
Основные двугранные углы φ и ψ (и ω). Все три угла находятся под углом 180° в показанной конфигурации.

Пептидная связь — вид амидной связи, возникающей при образовании белков и пептидов в результате взаимодействия α-аминогруппы (—NH2) одной аминокислоты с α-карбоксильной группой (—СООН) другой аминокислоты.

Из двух аминокислот (1) и (2) образуется дипептид (цепочка из двух аминокислот) и молекула воды. По этой же схеме рибосома генерирует и более длинные цепочки из аминокислот: полипептиды и белки. Разные аминокислоты, которые являются «строительными блоками» для белка, отличаются радикалом R.

Свойства пептидной связи

Как и в случае любых амидов, в пептидной связи за счет резонанса канонических структур связь C-N между углеродом карбонильной группы и атомом азота частично имеет характер двойной:

Это проявляется, в частности, в уменьшении её длины до 1,33 ангстрема:

Это обусловливает следующие свойства:

  • 4 атома связи (C, N, O и H) и 2 α-углерода находятся в одной плоскости. R-группы аминокислот и водороды при α-углеродах находятся вне этой плоскости.
  • H и O в пептидной связи, а также α-углероды двух аминокислот транс-ориентированы (транс-изомер более устойчив). В случае L-аминокислот, что имеет место во всех природных белках и пептидах, R-группы также транс-ориентированы.
  • В случае полипептида вращение возможно вокруг связи около азота (N-C, угол вращения обозначен как ψ) или между углеродами каждого пептидного звена (C-C, угол вращения обозначен как φ), но невозможно в месте соединения звеньев из-за их частично двойного характера связи.

Конформация полипептидов

Углы φ и ψ могут принимать различные значения, и число возможных пространственных конфигураций для полипептидной цепи может быть бесконечно большим. Однако в реальных условиях ряд конфигураций не реализуется из-за пространственных затруднений.

В пределах стерически дозволенных углов φ и ψ наиболее вероятна такая конфигурация пептидной цепи, при которой потенциальная энергия системы минимальна. Выигрыш потенциальной энергии происходит в результате целого ряда взаимодействий между атомами и атомными группами внутри полипептидной цепи (нековалентные взаимодействия, дипольные взаимодействия, торсионный потенциал).

Существует некоторое минимальное расстояние между центрами атомов, при котором их дальнейшее сближение невозможно. Эти расстояния, оценены в основном по данным кристаллографии[1].

Для обнаружения белков и пептидов, а также их количественного определения в растворе используют биуретовую реакцию.

Примечания

  1. Stereochemistry of polypeptide chain configurations (англ.) // Journal of Molecular Biology. — 1963-07-01. — Vol. 7, iss. 1. — P. 95–99. — ISSN 0022-2836. — doi:10.1016/S0022-2836(63)80023-6.