Перейти на страницу файла на Викискладе

Файл:Quantum ideal gas pressure 3d.svg

Материал из Википедии — свободной энциклопедии
Перейти к навигации Перейти к поиску

Исходный файл(SVG-файл, номинально 270 × 207 пкс, размер файла: 19 КБ)

Краткое описание

Описание
English: Pressure of classical ideal gas and quantum ideal gases (Fermi gas, Bose gas) as a function of temperature, for a fixed density of particles. This is for the case of non-relativistic (massive, slow) particles in three dimensions.
Русский: Давление классического и квантовых газов (Ферми и Бозе) в зависимости от температуры.

A few features can be seen:

  • The classical gas has P = (Nk/V) T with a slope of Nk/V. As temperature increase, the Fermi and Bose gases approach the ideal gas line, gradually.
  • The Fermi gas is always higher pressure, due to Pauli repulsion; the Bose gas is always lower pressure, due to boson attraction.
  • Even at 0 temperature, the Fermi gas maintains a nonzero pressure, known as degeneracy pressure or Fermi pressure.
  • The * marker indicates the upper temperature of Bose condensation. Moving below this temperature, the pressure drops rapidly as more and more particles are absorbed into the condensed phase.

The figure has been scaled in a way that the particle degeneracy factor, density, mass, etc. are all factored out and irrelevant.

See also Quantum ideal gas entropy 3d.svg and Quantum ideal gas chemical potential 3d.svg.
Дата
Источник Собственная работа
Автор Nanite
Другие версии
SVG‑разработка
InfoField
 
Исходный код этого SVG-файла корректен.
 
Это plot было создано с помощью Matplotlib
Исходный код
InfoField

Python code

#!/usr/bin/env python3

import numpy as np
from matplotlib import pyplot as plt
import mpmath
import sys

def fixpoly(s,x):
    # The mpmath polylog sometimes returns a tiny spurious imaginary part, and
    # it throws exceptions for weird cases. Clean this up.
    try:
        return np.real(mpmath.fp.polylog(s,x))
    except (OverflowError, ValueError):
        return np.nan
polylog = np.vectorize(fixpoly, otypes=[float])

# assumed density of states G(E) = V * g_0 * (E - E_0) ^ (alpha - 1) / Gamma(alpha)
# as appropriate for 3D, nonrelativistic, massive particles.
# The prefactor g_0 includes things like spin degeneracy, mass, planck constant, factors of pi, etc.
# V is volume of the system (where applicable - for particles in harmonic well,
# just make sure V*g_0 is the right value).
# We will only plot things that are independent of V and g_0, and we assume E_0 = 0.

# The key parameter in this density of states is alpha.
# for massive particle in a box, alpha = dimensionality/2
# for particle in a harmonic well, alpha = dimensionality
# for hyperrelativistic particles in a box, alpha = dimensionality
if len(sys.argv) > 1:
    # allow massive-particle-in-box dimensionality to be provided as command line arg
    alpha = float(sys.argv[1]) / 2
else:
    # default to 3D massive case:
    alpha = 1.5

# Both Fermi gas and Bose gas are easily calculated in grand canonical ensemble.
# Fermi gas has grand potential given by:
#   Omega = - V * g_0 * (kT)^(alpha + 1) * fdint(alpha, mu/kT)
# where fdint(s, t) is the complete fermi-dirac integral,
#   fdint(s, t) = -polylog(s + 1, -exp(t))
# Bose gas has grand potential:
#   Omega = - V * g_0 * (kT)^(alpha + 1) * beint(alpha, mu/kT)
# (only valid for mu <= 0) where beint(s, t) is
#   beint(s, t) = +polylog(s + 1, +exp(t))
# The classical ideal gas is in-between these, with:
#   Omega = - V * g_0 * (kT)^(alpha + 1) * exp(mu/kT)

# Quantities:
# Pressure        P = -d(Omega)/d(V) = -Omega/V
# Particle number N = -d(Omega)/d(mu)
# Entropy         S = -d(Omega)/d(T)
# Note that:
#    d/dt polylog(s, exp(t)) = polylog(s-1, exp(t))
#
# So these derivatives are easy to compute, e.g., for Fermi:
#   N = -V * g_0 * (kT)^(alpha)  * fdint(alpha - 1 , mu/kT)
#   S = k * N * ( (alpha + 1) * fdint(alpha, mu/kT) / fdint(alpha-1, mu/kT) - mu/kT )
#  ( .. likewise substituting beint or exp for the bose/classical cases .. )
#
# Unfortunately, there is no analytic formula for mu in terms of N, only the other way.
# This is unfortunate since we want to plot temperature-dependence of a system
# with fixed N and fixed V.
# However we can see that both P and N are functions of kT and mu/kT. So, we can
# sweep the value of mu/kT, and then at each point, choose T such that N has the
# desired value.

# To nondimensionalize, we will use a characteristic temperature scale T' based on
# the fixed number N', using the classical case for mu=0:
#    g_0 (kT')^(alpha) = N'/V
# Roughly speaking, this is the temperature at which the thermal de broglie
# wavelength is comparable to the distance between identical particles.
# Likewise, a characteristic pressure to match this temperature and density:
#    P' = N' k T' / V
#       = g_0 (kT')^(alpha + 1)
# With T' and P' in hand, we can rescale all our formulas to be independent of
# g_0, N', and volume, and also do our mu-scanning trick.
# e.g., in the fermi case we get:
#    (T/T')^(alpha) = 1/fdint(alpha - 1, mu/kT)
#    P/P' = (T/T')^(alpha + 1) * fdint(alpha, mu/kT)

# Variables used below:
# z = exp(mu/kT)
# T refers to T/T', where T' defined above.
# P refers to P/P', where P' defined above.
# S refers to S/(N.k)
# mu refers to mu/(kT')

# Pressure vs temperature graph
fig1 = plt.figure()
fig1.set_size_inches(3,2.3)
ax1 = plt.axes((0.09, 0.17, 0.90, 0.82))

# Entropy vs temperature graph
fig2 = plt.figure()
fig2.set_size_inches(3,2.3)
ax2 = plt.axes((0.18, 0.17, 0.81, 0.82))

# Chemical potential vs temperature graph
fig3 = plt.figure()
fig3.set_size_inches(3,2.3)
ax3 = plt.axes((0.15, 0.17, 0.84, 0.82))

# Fermi gas
color_fermi = '#1f77b4'
T_fermi = mpmath.fp.gamma(alpha+1) ** (1./alpha)
P_fermi = T_fermi / (alpha+1)
# sweep z; make the last point to be basically T=0
z = np.exp(np.linspace(-2, 20, 201))
z[-1] = 1e100
T = (-polylog(alpha, -z)) ** (-1./alpha)
P = (T)**(alpha + 1) * -polylog(alpha + 1, -z)
S = (alpha+1) * polylog(alpha + 1, -z)/polylog(alpha, -z) - np.log(z)
mu = np.log(z) * T
# extend traces to exactly T=0
T = np.concatenate((T, [0.]))
P = np.concatenate((P, [P_fermi]))
S = np.concatenate((S, [0.]))
mu = np.concatenate((mu, [T_fermi]))

ax1.plot(T,P, label="Fermi", color=color_fermi)
ax2.plot(T,S, label="Fermi", color=color_fermi)
ax3.plot(T,mu, label="Fermi", color=color_fermi)

# Indicate fermi temperature
P_at_T_fermi = np.interp(T_fermi, T[::-1], P[::-1])
S_at_T_fermi = np.interp(T_fermi, T[::-1], S[::-1])
mu_at_T_fermi = np.interp(T_fermi, T[::-1], mu[::-1])
ax1.plot([T_fermi, T_fermi], [P_at_T_fermi, -100 ], color=color_fermi, lw=1, ls=(0, (1,5)))
ax2.plot([T_fermi, T_fermi], [S_at_T_fermi, -100 ], color=color_fermi, lw=1, ls=(0, (1,5)))
ax3.plot([T_fermi, T_fermi], [mu_at_T_fermi, -100 ], color=color_fermi, lw=1, ls=(0, (1,5)))


# Ideal gas -- this is just a straight line T=P but for consistency, calculate
# it similarly to the bose and fermi cases.
color_classical = '#ff7f0e'
z = np.exp(np.linspace(-2, 20, 200))
T = (z) ** (-1./alpha)
P = (T)**(alpha + 1) * z
S = (alpha+1) - np.log(z)
mu = np.log(z) * T
# extend traces to exactly T=0
T = np.concatenate((T, [0.]))
P = np.concatenate((P, [0.]))
S = np.concatenate((S, [-np.inf]))
mu = np.concatenate((mu, [0.]))

ax1.plot(T,P, label="classical", color=color_classical)
ax2.plot(T,S, label="classical", color=color_classical)
ax3.plot(T,mu, label="classical", color=color_classical)


# Bose gas
color_bose = '#2ca02c'
# Approach mu=0 from below, making sure to include the last floating point
# number smaller than 1.
z = np.concatenate((np.linspace(0.01, 0.99, 99), [0.999, 0.9999, 1 - 1e-16]))
#z = 1 - np.exp(np.linspace(-0.1, -34, 200))
#z = np.exp(np.linspace(-2, -1e-15, 100))
T = (polylog(alpha, z)) ** (-1./alpha)
P = (T)**(alpha + 1) * polylog(alpha + 1, z)
S = (alpha+1) * polylog(alpha + 1, z)/polylog(alpha, z) - np.log(z)
mu = np.log(z) * T
if alpha > 1:
    # In >2 dimensions, the bose gas starts condensing at nonzero temperature,
    # right at the point when mu=0.
    Tcrit = (polylog(alpha, 1)) ** (-1./alpha)
    Pcrit = (Tcrit)**(alpha + 1) * polylog(alpha + 1, 1)
    Scrit = (alpha+1) * polylog(alpha + 1, 1)/polylog(alpha, 1)
    # What about T < Tcrit?
    # Basically now mu is pinned to 0. It cannot go any higher because that would
    # mean infinite particles in every state with energy below mu.
    # Instead as temperature lowers, mu stays at 0 and the particle number in the
    # continuum of states with energy above mu will drop accordingly.
    # The continuum is called the 'noncondensed phase'; the particles that
    # have disappeared have all necessarily gone into some lowest-energy state
    # that is infinitesimally above mu, the 'condensed phase'.
    # So, let's set mu=0, and drop our constraint on N, and calculate the pressure
    # from the continuum phase just as before. (the condensed phase contributes
    # no pressure, in macroscopic ideal gas).
    T2 = np.linspace(Tcrit, 0, 101)
    P2 = T2 ** (alpha + 1) * polylog(alpha + 1, 1)
    # In the case of entropy "S/Nk", we have to be careful since now the total N' is
    # distinct from our continuum N (excited).
    S2 = T2 ** alpha * (alpha+1) * polylog(alpha + 1, 1)
    mu2 = 0*T2

    # concatenate to existing traces
    T = np.concatenate((T, T2))
    P = np.concatenate((P, P2))
    S = np.concatenate((S, S2))
    mu = np.concatenate((mu, mu2))

    # Mark the critical temperature with a *
    ax1.plot([Tcrit],[P2[0]], '*', color='k', ms=12, mew=0, alpha=0.6, zorder=2.5)
    ax2.plot([Tcrit],[S2[0]], '*', color='k', ms=12, mew=0, alpha=0.6, zorder=2.5)
    ax3.plot([Tcrit],[0], '*', color='k', ms=12, mew=0, alpha=0.6, zorder=2.5)

    ax1.plot([Tcrit, Tcrit], [P2[0], -100 ], color=color_bose, lw=1, ls=(0, (4,2)))
    ax2.plot([Tcrit, Tcrit], [S2[0], -100 ], color=color_bose, lw=1, ls=(0, (4,2)))
    ax3.plot([Tcrit, Tcrit], [0, -100 ], color=color_bose, lw=1, ls=(0, (4,2)))

else:
    # extend traces to 0
    T = np.concatenate((T, [0.]))
    P = np.concatenate((P, [0.]))
    S = np.concatenate((S, [0.]))
    mu = np.concatenate((mu, [0.]))

ax1.plot(T,P, label="Bose", color=color_bose)
ax2.plot(T,S, label="Bose", color=color_bose)
ax3.plot(T,mu, label="Bose", color=color_bose)


# format temperature axis nicely
for ax in [ax1, ax2, ax3]:
    ax.set_xlim(0,1.8)
    ax.set_xlabel('temperature', labelpad=0)
    tl = []
    tl.append((0, "0", 'k'))
    if alpha > 1:
        tl.append((Tcrit, r"$T_{\rm B}$", color_bose))
    tl.append((T_fermi, r"$T_{\rm F}$", color_fermi))
    ticks, labels, colors = zip(*tl)
    ax.set_xticks(ticks)
    ax.set_xticklabels(labels)
    for label,color in zip(ax.xaxis.get_ticklabels(), colors):
        label.set_color(color)

ax1.set_ylim(0,1.8)
ax1.set_yticks([0])
ax1.set_ylabel('pressure', labelpad=-5)
ax1.legend(loc='lower right')
fig1.savefig('quantum ideal gas pressure %gd.svg'%(alpha*2,))

yrange = 0.2 + 1 + (1 + np.log(1.8))*alpha   # range to fit the right side
ax2.set_ylim(-0.4*yrange, +yrange)
ax2.set_ylabel('entropy per particle $S/Nk$')
ax2.legend(loc='lower right')
fig2.savefig('quantum ideal gas entropy %gd.svg'%(alpha*2,))

yrange = 1.5 + 0.7*alpha
ax3.set_ylim(-yrange, +0.6*yrange)
ax3.set_yticks([0])
ax3.set_yticklabels([r'$\varepsilon_0$'])
ax3.set_ylabel('chemical potential $\\mu$')
ax3.legend(loc='lower left')
fig3.savefig('quantum ideal gas chemical potential %gd.svg'%(alpha*2,))

Лицензирование

Я, владелец авторских прав на это произведение, добровольно публикую его на условиях следующей лицензии:
Creative Commons CC-Zero Этот файл доступен на условиях Creative Commons CC0 1.0 Универсальной передачи в общественное достояние (Universal Public Domain Dedication).
Лица, связанные с работой над этим произведением, решили передать данное произведение в общественное достояние, отказавшись от всех прав на произведение по всему миру в рамках закона об авторских правах (а также связанных и смежных прав), в той степени, которую допускает закон. Вы можете копировать, изменять, распространять, исполнять данное произведение в любых целях, в том числе в коммерческих, без получения на это разрешения автора.

Краткие подписи

Добавьте однострочное описание того, что собой представляет этот файл
Pressure of classical ideal gas and quantum ideal gases (Fermi gas, Bose gas) in three dimensions as a function of temperature, for a fixed density of particles.

Элементы, изображённые на этом файле

изображённый объект

У этого свойства есть некоторое значение без элемента в

image/svg+xml

История файла

Нажмите на дату/время, чтобы посмотреть файл, который был загружен в тот момент.

Дата/времяМиниатюраРазмерыУчастникПримечание
текущий19:45, 19 января 2021Миниатюра для версии от 19:45, 19 января 2021270 × 207 (19 КБ)Naniteadd bose-critical and fermi temperature ticks
05:16, 18 января 2021Миниатюра для версии от 05:16, 18 января 2021270 × 207 (20 КБ)Nanitefill closer to margins; mark origin as 0,0
01:23, 23 июня 2020Миниатюра для версии от 01:23, 23 июня 2020270 × 207 (18 КБ)NaniteUploaded own work with UploadWizard

Нет страниц, использующих этот файл.

Глобальное использование файла

Данный файл используется в следующих вики:

Метаданные