Пример Боуэна
Пример Боуэна, или гетероклинический аттрактор, — предложенный Р. Боуэном пример динамической системы, в которой у почти любой начальной точки отсутствуют временны́е средние, и, тем самым, для которой нет меры Синая-Рюэлля-Боуэна. Этот пример — векторное поле на плоскости, имеющее две особые точки-седла, исходящая сепаратриса каждого из которых оказывается одновременно входящей сепаратрисой другого. На собственные значения сёдел при этом накладываются определённые ограничения, гарантирующие, что любая траектория, стартующая внутри «сепаратрисного двуугольника», будет к этому «двуугольнику» стремиться.
Пример Боуэна имеет коразмерность 2 в пространстве векторных полей на плоскости.
Формальное описание
[править | править код]Фазовое пространство примера Боуэна — область, ограниченная полициклом-«лункой», состоящей из двух седёл и двух соединяющих их сепаратрис. На собственные значения сёдел , при этом накладывается предположение , гарантирующее, что достаточно близкие к «лунке» траектории будут к этой лунке стремиться.
Этот раздел не завершён. |
Динамика и поведение временны́х средних
[править | править код]Этот раздел статьи ещё не написан. |
Литература
[править | править код]- F. Takens, Heteroclinic Attractors: Time Averages and Moduli of Topological Conjugacy, Bol. Soc. Bras. Mat., 25 (1994), no. 1, pp. 107–120.
- Т. И. Голенищева-Кутузовa, В. А. Клепцын Исследование сходимости процедуры Крылова–Боголюбова в примере Боуэна, Матем. заметки, 82:5 (2007), 678–689.
Это заготовка статьи по математике. Помогите Википедии, дополнив её. |