Волоконно-оптический гироскоп: различия между версиями

Материал из Википедии — свободной энциклопедии
Перейти к навигации Перейти к поиску
[непроверенная версия][непроверенная версия]
Содержимое удалено Содержимое добавлено
Нет описания правки
Нет описания правки
Строка 28: Строка 28:
[[Категория:Применение лазеров]]
[[Категория:Применение лазеров]]


[[de:Faserkreisel]]
[[en:Fibre optic gyroscope]]
[[en:Fibre optic gyroscope]]
[[es:Giróscopo de fibra óptica]]
[[fr:Gyrolaser]]
[[he:גירוסקופ סיב אופטי]]
[[nl:Fibre optic gyrokompas]]
[[ja:光ファイバジャイロスコープ]]

Версия от 04:54, 10 января 2012

По круговому оптическому пути, благодаря расщепителю луча свет распространяется в двух противоположных направлениях.

Волоконно-оптический гироскоп — это оптико-электронный прибор, измеряющий абсолютную (относительно инерциального пространства) угловую скорость. Как и у всех оптических гироскопов, принцип работы основан на эффекте Саньяка. Луч света в волоконно-оптическом гироскопе проходит через катушку оптоволокна, отсюда и название. Для повышения чувствительности гироскопа используют световод большой длины (до 1000 м) уложенный витками.

Принцип работы

В оптическом гироскопе широкое применение находят частотные и фазовые модуляторы.

Первого типа модуляторы переводят фазу Саньяка в переменные изменения разности частот противоположно бегущих лучей; при компенсации фазы Саньяка разностная частота пропорциональна угловой скорости вращения Ω. Достоинством частотных модуляторов при использовании в ВОГ является представление выходного сигнала в цифровом виде.

Второго типа модуляторы переводят фазу Саньяка в изменение амплитуды переменного сигнала, что исключает низкочастотные шумы и облегчает измерение информационного параметра.

Частотные модуляторы основаны на акустооптическом эффекте, который состоит в том, что при прохождении в среде ультразвуковых колебании в ней появляются области с механическими напряжениями(области сжатия и разряжения), это приводит к изменению коэффициента преломления среды. Вызванные ультразвуковой волной изменения коэффициента преломления среды образуют центры дифракции для падающего света. Частотный сдвиг света определяется частотой ультразвуковых колебаний.

Свойства прибора

Появлению такого прибора как волоконно-оптический гироскоп, способствовало развитие волоконной оптики, а именно разработка одномодового диэлектрического световода со специальными характеристиками. Именно такие световоды определяют уникальные свойства прибора:

  • потенциально высокая точность;
  • малые габариты и масса конструкции;
  • большой диапазон измеряемых угловых скоростей;
  • высокая надежность, благодаря отсутствию вращающихся частей прибора.

Применение

См. также