Перколяция

Материал из Википедии — свободной энциклопедии
Перейти к: навигация, поиск

В физике и химии явлением перколяции (от лат. percōlāre, просачиваться, протекать) называется явление протекания или не протекания жидкостей через пористые материалы, электричества через смесь проводящих и непроводящих частиц и другие подобные процессы. Теория перколяции находит применение в описании разнообразных систем и явлений, в том числе таких, как распространение эпидемий и надежность компьютерных сетей.

Некоторые примеры задач, которые решаются через теорию перколяции:

  • Сколько надо добавить медных опилок в ящик с песком, чтобы смесь начала проводить ток?
  • Какой процент людей должен быть восприимчив к болезни, чтобы стала возможна эпидемия?


Описание[править | править исходный текст]

Явление перколяции (или протекания среды) определяется:

  1. Средой, в которой наблюдается это явление;
  2. Внешним источником, который обеспечивает протекание в этой среде;
  3. Способом протекания среды, который зависит от внешнего источника.

Пример[править | править исходный текст]

В качестве простейшего примера можно рассмотреть модель протекания (например электрического пробоя) в двумерной квадратной решетке, состоящей из узлов, которые могут быть проводящими или непроводящими. В начальный момент времени все узлы сетки являются непроводящими. Со временем источник заменяет непроводящие узлы на проводящие, и число проводящих узлов постепенно растет. При этом узлы замещаются случайным образом, то есть выбор любого из узлов для замещения является равновероятным для всей поверхности решетки.

Перколяцией называют момент появления такого состояния решетки, при котором существует хотя бы один непрерывный путь через соседние проводящие узлы от одного до противоположного края. Очевидно, что с ростом числа проводящих узлов, этот момент наступит раньше, чем вся поверхность решетки будет состоять исключительно из проводящих узлов.

Обозначим непроводящее и проводящее состояние узлов нулями и единицами соответственно. В двумерном случае среде будет соответствовать бинарная матрица. Последовательность замены нулей матрицы на единицы будет соответствовать источнику протекания.

В начальный момент времени матрица состоит полностью из непроводящих элементов:

0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

При воздействии внешнего источника в матрице начинают добавляться проводящие элементы, однако поначалу их недостаточно для перколяции:

0 0 0 1
1 0 0 0
0 0 1 0
0 0 1 0

По мере увеличения числа проводящих узлов наступает такой критический момент, когда происходит перколяция, как показано ниже:

0 0 0 1
1 1 0 0
0 1 1 0
0 0 1 1

Видно, что от левой к правой границе последней матрицы имеется цепочка элементов, которая обеспечивает протекание тока по проводящим узлам (единицам), непрерывно следующим друг за другом.

Перколяция может наблюдаться как в решетках, так и других геометрических конструкциях, в том числе непрерывных, состоящих из большого числа подобных элементов или непрерывных областей соответственно, которые могут находиться в одном из двух состояний. Соответствующие математические модели называются решеточными или континуальными.

В качестве примера перколяции в непрерывной среде может выступать прохождение жидкости через объемный пористый образец (например, воды через губку из пеноообразующего материала), в котором происходит постепенное надувание пузырьков до тех пор, пока их размеров не станет достаточно для просачивания жидкости от одного края образца до другого.

Индуктивно, понятие перколяции переносится на любые конструкции или материалы, которые называются перколяционной средой, для которой должен быть определен внешний источник протекания, способ протекания и элементы (фрагменты) которой могут находиться в разных состояниях, одно из которых (первичное) не удовлетворяет данному способу прохождения, а другое удовлетворяет. Способ протекания также подразумевает собой определенную последовательность возникновения элементов или изменение фрагментов среды в нужное для протекания состояние, которое обеспечивается источником. Источник же переводит постепенно элементы или фрагменты образца из одного состояния к другому, пока не наступит момент перколяции.

Порог протекания[править | править исходный текст]

Совокупность элементов, по которым происходит протекание, называется перколяционным кластером. Будучи по своей природе связным случайным графом, в зависимости от конкретной реализации он может иметь различную форму. Поэтому принято характеризовать его общий размер. Порогом протекания называется минимальная концентрация, при которой возникает протекание.

Ввиду случайного характера переключений состояний элементов среды, в конечной системе чётко определенного порога (размера критического кластера) не существует, а имеется так называемая критическая область значений \delta (N)\,, в которую попадают значения порога перколяции, полученные в результате различных случайных реализаций. С увеличением размеров системы область сужается в точку.

Литература[править | править исходный текст]