Затухающие колебания

Материал из Википедии — свободной энциклопедии
Перейти к навигации Перейти к поиску
Затухающие колебания пружинного маятника

Затухающие колебания — колебания, энергия которых уменьшается с течением времени. Бесконечно длящийся процесс вида в природе невозможен. Свободные колебания любого осциллятора рано или поздно затухают и прекращаются. Поэтому на практике обычно имеют дело с затухающими колебаниями. Они характеризуются тем, что амплитуда колебаний A является убывающей функцией. Обычно затухание происходит под действием сил сопротивления среды, наиболее часто выражаемых линейной зависимостью от скорости колебаний или её квадрата.

В акустике: затухание — уменьшение уровня сигнала до полной неслышимости.

Пример — затухающие колебания пружинного маятника[править | править код]

Модель пружинного маятника. B — демпфер. F — внешняя сила (в примере не присутствует).

Пусть имеется система, состоящая из пружины (подчиняющейся закону Гука), один конец которой жёстко закреплён, а на другом находится тело массой m. Колебания совершаются в среде, где сила сопротивления пропорциональна скорости с коэффициентом c (см. вязкое трение).

Тогда второй закон Ньютона для рассматриваемой системы запишется как

где  — сила сопротивления, а  — сила упругости. Получается

или в дифференциальной форме

где  — коэффициент упругости в законе Гука,  — коэффициент сопротивления, устанавливающий соотношение между скоростью движения грузика и возникающей при этом силой сопротивления.

Для упрощения вводятся следующие обозначения:

Величину называют собственной частотой системы,  — коэффициентом затухания. С такими обозначениями дифференциальное уравнение принимает вид

Уравнение затухающих колебаний. Возможные решения[править | править код]

Последнее уравнение предыдущего раздела является общим уравнением затухающих колебаний величины (которая, вообще говоря, не обязательно должна быть координатой). Если абстрагироваться от того, как были получены параметры и в конкретном примере, такое уравнение применимо для описания широкого класса систем с затуханием.

Сделав замену , получают характеристическое уравнение

корни которого вычисляются по формуле

Зависимость графиков колебаний от значения .

В зависимости от величины коэффициента затухания решение разделяется на три возможных варианта.

  • Апериодичность

Если , то имеется два действительных корня, и решение дифференциального уравнения принимает вид:

В этом случае колебания с самого начала экспоненциально затухают.

  • Граница апериодичности

Если , два действительных корня совпадают , и решением уравнения является:

В данном случае может иметь место вре́менный рост, но потом — экспоненциальное затухание.

  • Слабое затухание

Если , то решением характеристического уравнения являются два комплексно сопряжённых корня

Тогда решением исходного дифференциального уравнения является

где  — собственная частота затухающих колебаний.

Константы и в каждом из случаев определяются из начальных условий:

См. также[править | править код]

Литература[править | править код]

Лит.: Савельев И. В., Курс общей физики:Механика, 2001.