Алюминиевые сплавы

Материал из Википедии — свободной энциклопедии
(перенаправлено с «Алюминиевый сплав»)
Перейти к: навигация, поиск
Протравленный слиток алюминиевого сплава
Фазовая диаграмма системы Al-Si

Алюминиевые сплавы — сплавы, основной массовой частью которых является алюминий. Самыми распространенными элементами в составе алюминиевых сплавов являются: медь, магний, марганец, кремний и цинк. Все алюминиевые сплавы можно разделить на две основные группы: термически обработанные и термически не обработанные. Большая часть производимых сплавов относится к деформируемым, которые предназначены для последующей ковки и штамповки.[1]

Классификация[править | править вики-текст]

Приведена согласно национальным стандартам США (стандарт H35.1 ANSI) и ГОСТ России. В России основные стандарты это ГОСТ 1583 «Сплавы алюминиевые литейные. Технические условия» и ГОСТ 4784 «Алюминий и сплавы алюминиевые деформируемые. Марки». Существует также UNS маркировка и международный стандарт алюминиевых сплавов и их маркировки ISO R209 b.

Алюминиевый прокат
  • Алюминиево-магниевые Al-Mg (ANSI: серия 5ххх у деформируемых сплавов и 5xx.x у сплавов для изделий фасонного литья; ГОСТ: АМг).

Сплавы системы Al-Mg характеризуются сочетанием удовлетворительной прочности, хорошей пластичности, очень хорошей свариваемости и коррозионной стойкости [2]. Кроме того, эти сплавы отличаются высокой вибростойкостью.

В сплавах этой системы, содержащих до 6 % Mg, образуется эвтектическая система соединения Al3Mg2 c твердым раствором на основе алюминия. Наиболее широкое распространение в промышленности получили сплавы с содержанием магния от 1 до 5 %.

Рост содержания Mg в сплаве существенно увеличивает его прочность. Каждый процент магния повышает предел прочности сплава на 30 МПа, а предел текучести — на 20 МПа. При этом относительное удлинение уменьшается незначительно и находится в пределах 30…35 %.

Сплавы с содержанием магния до 3 % (по массе) структурно стабильны при комнатной и повышенной температуре даже в значительно нагартованном состоянии. С ростом концентрации магния в нагартованном состоянии структура сплава становится нестабильной. Кроме того, увеличение содержания магния свыше 6 % приводит к ухудшению коррозионной стойкости сплава.

Для улучшения прочностных характеристик сплавы системы Al-Mg легируют хромом, марганцем, титаном, кремнием или ванадием. Попадания в сплавы этой системы меди и железа стараются избегать, поскольку они снижают их коррозионную стойкость и свариваемость.

Сплавы этой системы обладают хорошей прочностью, пластичностью и технологичностью, высокой коррозионной стойкостью и хорошей свариваемостью.

Основными примесями в сплавах системы Al-Mn являются железо и кремний. Оба этих элемента уменьшают растворимость марганца в алюминии. Для получения мелкозернистой структуры сплавы этой системы легируют титаном.

Присутствие достаточного количества марганца обеспечивает стабильность структуры нагартованного металла при комнатной и повышенной температурах.

  • Алюминиево-медные Al-Cu (Al-Cu-Mg) (ANSI: серия 2ххх, 2xx.x; ГОСТ: АМ).

Механические свойства сплавов этой системы в термоупрочненном состоянии достигают, а иногда и превышают, механические свойства низкоуглеродистых сталей. Эти сплавы высокотехнологичны. Однако у них есть и существенный недостаток — низкое сопротивление коррозии, что приводит к необходимости использовать защитные покрытия.

В качестве легирующих добавок могут встречаться марганец, кремний, железо и магний. Причем наиболее сильное влияние на свойства сплава оказывает последний: легирование магнием заметно повышает предел прочности и текучести. Добавка кремния в сплав повышает его способность к искусственному старению. Легирование железом и никелем повышает жаропрочность сплавов второй серии.

Нагартовка этих сплавов после закалки ускоряет искусственное старение, а также повышает прочность и сопротивление коррозии под напряжением.

  • Сплавы системы Al-Zn-Mg (Al-Zn-Mg-Cu) (ANSI: серия 7ххх, 7xx.x).

Сплавы этой системы ценятся за очень высокую прочность и хорошую технологичность. Представитель системы — сплав 7075 является самым прочным из всех алюминиевых сплавов. Эффект столь высокого упрочнения достигается благодаря высокой растворимости цинка (70 %) и магния (17,4 %) при повышенных температурах, резко уменьшающейся при охлаждении.

Однако существенным недостатком этих сплавов является крайне низкая коррозионная стойкость под напряжением. Повысить сопротивление коррозии сплавов под напряжением можно легированием медью.

Нельзя не отметить открытой в 60-е годы закономерности: присутствие лития в сплавах замедляет естественное и ускоряет искусственное старение. Помимо этого, присутствие лития уменьшает удельный вес сплава и существенно повышает его модуль упругости. В результате этого открытия были разработаны новые системы сплавов Al-Mg-Li, Al-Cu-Li и Al-Mg-Cu-Li.

  • Алюминиево-кремниевые сплавы (силумины) лучше всего подходят для литья. Из них часто отливают корпуса разных механизмов.
  • Комплексные сплавы на основе алюминия: авиаль.

Маркировка по ГОСТ[править | править вики-текст]

Принята буквенно-цифровая система маркировки. Буква, стоящая в начале означает:

А — технический алюминий;

Д — дюралюминий;

АК — алюминиевый сплав, ковкий;

АВ — авиаль;

В — высокопрочный алюминиевый сплав;

АЛ — литейный алюминиевый сплав;

АМг — алюминево-магниевый сплав

АМц — алюминево-марганцевый сплав

САП — спеченные алюминиевые порошки;

САС — спеченные алюминиевые сплавы.

Вслед за буквами идет номер марки сплава.

За номером марки сплава ставится буква, обозначающая состояние сплава :

М — сплав после отжига (мягкий);

Т — после закалки и естественного старения;

А — плакированный (нанесен чистый слой алюминия);

Н — нагартованный;

П — полунагартованный.

Термическая обработка[править | править вики-текст]

Применяют: отжиг, закалку, старение.

Отжиг применяют 3-х типов:

  • Диффузионный (гомогенизация)
  • Рекристаллизационный
  • Отжиг термически упрочняемых сплавов

Гомогенизация выравнивает химическую микронеоднородность зерен путем диффузии (уменьшение дендритной ликвации). Рекристаллизационный отжиг восстанавливает пластичность после обработки давлением. Отжиг термически упрочняемых сплавов полностью снимает упрочнение.

Химический состав[править | править вики-текст]

В соответствии с ГОСТ[3] соотношение кремния и железа в алюминиевых сплавах должно быть менее единицы.

Алюминиевые сплавы
Марка Массовая доля элементов, % Плотность, кг/дм³
ГОСТ ISO
209-1-89
Кремний Железо Медь Марганец Магний Хром Цинк Титан Другие Алюминий
не менее
Каждый Сумма
АД000 A199,8
1080A
0,15 0,15 0,03 0,02 0,02 0,06 0,02 0,02 99,8 2,7
АД00
1010
A199,7
1070A
0,2 0,25 0,03 0,03 0,03 0,07 0,03 0,03 99,7 2,7
АД00Е
1010Е
ЕА199,7
1370
0,1 0,25 0,02 0,01 0,02 0,01 0,04 Бор:0,02
Ванадий+титан:0,02
0,1 99,7 2,7
Знак обозначающий пригодность изделия из алюминия для вторичной переработки

См. также[править | править вики-текст]

Примечания[править | править вики-текст]

  1. Алюминиевый сплав в английской википедии. (англ.)
  2. Байков Д.И. и др. Сваривающиеся алюминиевые сплавы. — Л.: Судпромгиз, 1959. — 236 с.
  3. ГОСТ 4784-97 «Алюминий и сплавы алюминиевые деформируемые. Марки.»