Однородные координаты

Материал из Википедии — свободной энциклопедии
Перейти к: навигация, поиск

Однородные координаты ― система координат, используемая в проективной геометрии, подобно тому, как декартовы координаты используются в евклидовой геометрии.

Однородные координаты обладают тем свойством, что определяемый ими объект не меняется при умножении всех координат на одно и то же ненулевое число. Из-за этого количество координат, необходимое для представления точек, всегда на одну больше, чем размерность пространства, в котором эти координаты используются. Например, для представления точки на прямой в одномерном пространстве необходимы 2 координаты и 3 координаты для представления точки на плоскости в двумерном пространстве. В однородных координатах возможно представить даже точки, находящиеся в бесконечности.

Введены Плюккером в качестве аналитического подхода к принципу двойственности Жергонна — Понселе.

Проективная геометрия[править | править вики-текст]

Проективная плоскость обычно определяется как множество прямых в , проходящих через начало координат. Любая такая прямая однозначно определяется точкой, не совпадающей с началом координат . Пусть данная прямая проходит через точку с координатами , тогда однородные координаты соответствующей точки на проективной плоскости — это тройка чисел , определённая с точностью до пропорциональности и такая, что все три координаты одновременно не могут быть равны нулю.[1] Например,

От однородных координат к аффинным можно перейти следующим образом: в трёхмерном пространстве можно провести плоскость, не проходящую через начало координат; тогда проходящая через начало координат прямая либо параллельна этой плоскости (в этом случае точка называется «бесконечно удалённой»), либо пересекает её в единственной точке, тогда ей можно сопоставить координаты этой точки на плоскости. Например, в пространстве с координатами проведём плоскость . Тогда точке с однородными координатами , если , соответствует точка на плоскости с координатами Обратно, точка с аффинными координатами в однородных координатах запишется как

Прямые на проективной плоскости — это плоскости в трёхмерном пространстве, проходящие через начало координат. Такую плоскость можно задать уравнением . Нетрудно заметить, что при умножении на одно и то же число плоскость, задаваемая уравнением, не изменится. Это значит, что каждой плоскости соответствуют однородные координаты . Точке, записанной в однородных координатах, можно сопоставить прямую, которая в однородных координатах записывается так же. Таким образом, прямые на проективной плоскости образуют «вторую проективную плоскость», в этом и заключается принцип проективной двойственности.

Примеры[править | править вики-текст]

Источники[править | править вики-текст]

  1. Прасолов В. В., Тихомиров В. Н. Геометрия. — М.: МЦНМО, 2007.