Открытая система (статистическая механика)

Материал из Википедии — свободной энциклопедии
Перейти к навигации Перейти к поиску

Открытая система в статистической механике — механическая или термодинамическая система, которая может обмениваться веществом и энергией с окружающей средой. Открытые системы взаимодействуют с внешней средой, причем полностью описать это взаимодействие и задать его некоторым гамильтонианом невозможно. Открытая система в равновесной статистической механике — это механическая система, число частиц в которой не остаётся постоянным.

Примерами открытых систем служат живые организмы[1].

При определенных условиях открытая система может достигать стационарного состояния, в котором её структура или важнейшие структурные характеристики остаются постоянными, в то время как система осуществляет со средой обмен веществом и/или энергией. Открытые системы в процессе взаимодействия со средой могут достигать так называемого эквифинального состояния, то есть состояния, определяющегося лишь собственной структурой системы и не зависящего от начального состояния среды.

Часто в качестве открытой системы рассматривают систему с небольшим числом степеней свободы, взаимодействующую с окружающей средой (резервуаром). При этом среда обычно представляется в виде системы с большим или бесконечным числом степеней свободы, которая находится в состоянии термодинамического равновесия.

Исследования моделей открытых систем восходят к пионерской работе Н. Н. Боголюбова и Н. М. Крылова 1939 года[2].

Открытые системы в статистической механике и в квантовой механике могут быть гамильтоновыми и негамильтоновыми. Эволюция гамильтоновых систем целиком определяется её гамильтонианом. Например, в равновесной статистической механике системы с переменным числом частиц, которые можно считать открытыми, описываются большим каноническим распределением Гиббса. Важным классом открытых систем является класс негамильтоновых систем. Именно в негамильтоновых системах возможны процессы самоорганизации. Среди негамильтоновых систем выделяются диссипативные, аккретивные, обобщённо диссипативные системы.

С точки зрения наблюдателя, который может следить только за выделенной малой системой, но не за окружением (окружающей средой), эволюция этой (открытой) системы будет представлять собой некоторый случайный процесс.

Примечания

[править | править код]
  1. Яворский Б. М., Детлаф А. А. Справочник по физике. — М., Наука, 1990. — с. 104
  2. Боголюбов Н. Н. Избранные труды в трех томах. Т. 2. — К.: «Наукова думка», 1970. — С. 5—76.

Литература

[править | править код]
  • Accardi L., Lu Y. G., Volovich I. V. Quantum Theory and Its Stochastic Limit. — New York: Springer Verlag, 2002. (недоступная ссылка)
  • Attal S., Joye A., Pillet C.-A. Open Quantum Systems: The Markovian Approach. — Springer, 2006.
  • Davies E. B. Quantum Theory of Open Systems. Academic Press, London, 1976. ISBN 0-12-206150-0 9780122061509
  • Ingarden R. S., Kossakowski A., Ohya M. Information Dynamics and Open Systems: Classical and Quantum Approach. — New York: Kluwer, 1997.
  • Tarasov V. E. Quantum Mechanics of Non-Hamiltonian and Dissipative Systems. — Amsterdam, Boston, London, New York: Elsevier Science, 2008.
  • Weiss U. Quantum Dissipative Systems. — Singapore: World Scientific, 1993.
  • Isar A., Sandulescu A., Scutaru H., Stefanescu E., Scheid W. Open quantum systems // Int. J. Mod. Phys. — 1994. — № 3. — С. 635—714.
  • H.P. Breuer, F. Petruccione, Theory of Open Quantum Systems. (Oxford University Press, 2002).

Литература на русском языке

[править | править код]