Плотность множества

Материал из Википедии — свободной энциклопедии
Перейти к навигации Перейти к поиску

Плотность (измеримого) множества на вещественной прямой , в точке ― предел (если он существует) отношения

где ― произвольный отрезок, содержащий , а ― его мера Лебега. Если вместо меры рассматривать внешнюю меру, то получится определение внешней плотности в точке .

Аналогично вводится плотность в -мерном пространстве. При этом длины отрезков заменяются объёмами соответствующих -мерных параллелепипедов с гранями, параллельными координатным плоскостям, а предел рассматривается при стремлении к нулю диаметра параллелепипеда.

Для множеств из оказывается полезным понятие правой (левой) плотности в точке , которое получается из общего определения, если в нём рассматривать лишь отрезки , имеющие левым (правым) концом точку .

Связанные определения[править | править код]

  • Точка плотности — точка, в которой плотность равна единице.
    • Почти все точки измеримого множества суть его точки плотности.
  • Точка разрежения — точка, в которой плотность равна нулю.

См. также[править | править код]

Литература[править | править код]

  • Натансон И. П. Теория функций вещественной переменной. — М., 1974.