Порядок Шарковского

Материал из Википедии — свободной энциклопедии
Перейти к: навигация, поиск

Порядок Шарковского — упорядочение натуральных чисел, связанное с исследованием периодических точек динамических систем на отрезке или на вещественной прямой. А именно, скажем, что , если динамическая система на отрезке или прямой, имеющая точку наименьшего периода a, имеет и точку наименьшего периода b. Теорема Шарковского утверждает, что таким образом задаётся полный порядок на множестве натуральных чисел, устроенный следующим образом:

→ 3 → 5 → 7 → 9 → 11 → 13 → …
→ 3*2 → 5*2 → 7*2 → 9*2 → 11*2 → 13*2 → …
→ 3*2² → 5*2² → 7*2² → 9*2² → 11*2² → 13*2² → …
…………………………………
→ 2n → 2n-1 → … → 25 → 24 → 2³ → 2² → 2 → 1.

В верхней строчке выписаны в порядке возрастания все нечетные числа, кроме 1, во второй строке — произведения нечетных чисел (кроме 1) на 2, в третьей — произведения нечетных чисел на 2², в k-й строке сверху — произведения нечетных чисел на . Наконец, в последней (нижней) строке представлены чистые степени двойки.

В частности, число 3 — наибольшее в смысле этого упорядочения, поэтому наличие точки периода 3 влечёт за собой наличие точки с любым периодом. Часто этот частный случай сокращённо формулируют как период 3 влечёт хаос (стоит отметить, что в случае наличия точки периода 3 можно утверждать «хаотичность» системы и в других смыслах, — так, её энтропия будет положительна).

Период 3 влечёт хаос[править | править вики-текст]

Случай периодической точки периода 3 — наиболее содержательный. В этом случае, найдутся различные точки , для которых

Можно без ограничения общности считать, что .

Тогда для отрезков и выполнено

Отсюда несложно вывести, что для любого конечного слова , составленного из нулей и единиц и не содержащего двух нулей подряд, найдётся такой интервал , что

Отсюда уже несложно построить периодическую точку любого периода : достаточно взять в алфавите из нулей и единиц любое периодическое слово наименьшего периода k без двух нулей подряд. Для соответствующего ему отрезка выполнено

поэтому в этом отрезке найдётся периодическая точка соответствующего периода. Наконец, в терминах символической динамики (для разбиения , , дополнение) её судьба это последовательность , у которой k является наименьшим периодом, поэтому k является наименьшим периодом и для построенной точки.


История[править | править вики-текст]

Исследуя унимодальные отображения, в частности, квадратичное отображение, советский[1] математик А. Н. Шарковский в 1964 году обнаружил, что в области «хаоса» на соответствующей бифуркационной диаграмме имеются так называемые «окна периодичности» — узкие интервалы значений параметра (см. квадратичное отображение), в которых существуют периодические движения; им и соответствуют переходы в порядке Шарковского. В частности, двигаясь в нижней строке против направления стрелок от 1, мы проходим каскад удвоений периодов Фейгенбаума.

Примечания[править | править вики-текст]

Литература[править | править вики-текст]

  • А. Н. Шарковский, С. Ф. Коляда, А. Г. Спивак, В. В. Федоренко. Динамика одномерных отображений. Киев: Наукова думка, 1989. 216 с.
  • Ю. А. Данилов. Лекции по нелинейной динамике. Элементарное введение. Москва: Постмаркет, 2001. 184 с.