Стандартные ошибки в форме Ньюи-Уеста

Материал из Википедии — свободной энциклопедии
Перейти к: навигация, поиск

Стандартные ошибки в форме Ньюи-Уеста или состоятельные при гетероскедастичности и автокорреляции стандартные ошибки (HAC s.e. — Heteroskedasticity and Autocorrelation consistent standard errors) — применяемая в эконометрике оценка ковариационной матрицы МНК-оценок (в частности и стандартных ошибок) параметров линейной модели регрессии, альтернативная стандартной (классической) оценке, которая состоятельна при гетероскедастичности и автокорреляции случайных ошибок модели (в отличие от несостоятельной в этом случае классической оценки и стандартных ошибок в форме Уайта).

Сущность и формула[править | править вики-текст]

Истинная ковариационная матрица МНК-оценок параметров линейной модели в общем случае равна:

где  — ковариационная матрица случайных ошибок. В случае, если нет гетероскедастичности и автокорреляции (то есть когда ) формула упрощается

Поэтому для оценки ковариационной матрицы в классическом случае достаточно использовать оценку единственного параметра — дисперсии случайных ошибок: , которая, как можно доказать, является несмещенной и состоятельной оценкой. При наличии гетероскедастичности, но без автокорреляции, матрица V диагональна и вместо этих диагональных элементов можно использовать квадраты остатков и получить состоятельные оценки (стандартные ошибки в форме Уайта). В общем случае, кроме гетероскедастичности, может иметь место также и автокорреляция некоторого порядка. Следовательно, кроме диагональных элементов, необходимо оценить внедиагональные элементы, отстоящие от диагонали на L. Ньюи и Уест (Newey, West, 1987) показали, что состоятельными являются оценки следующего вида:

Данная оценка, как видно из формулы, зависит от выбранной «ширины окна» L и весовых коэффициентов . Простейший вариант выбора весов — выбрать их равными единице. Однако в этом случае не обеспечивается необходимая положительная определенность матрицы. Второй вариант — веса Бартлета . Однако более предпочтительным вариантом считаются веса Парзена:

Существует также проблема выбора «ширины окна» L. Обычно рекомендуется следующая оценка

Замечание[править | править вики-текст]

Иногда приведенную формулу оценки ковариационной матрицы корректируют на множитель . Такая корректировка теоретически позволяет получить более точные оценки на малых выборках. В то же время на больших выборках (асимптотически) эти оценки эквивалентны.

См. также[править | править вики-текст]

Литература[править | править вики-текст]

  • Магнус Я. Р., Катышев П. К., Пересецкий А. А. Эконометрика. — М.: Дело, 2004. — 576 с.
  • William H. Greene. Econometric analysis. — New York: Pearson Education, Inc., 2003. — 1026 с.